Full Text:   <3048>

Summary:  <1894>

CLC number: S476

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-11-16

Cited: 3

Clicked: 4529

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

In-Jung Lee

http://orcid.org/0000-0001-7154-4820

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.12 P.1011-1018

http://doi.org/10.1631/jzus.B1500081


Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress


Author(s):  Muhammad Waqas, Abdul Latif Khan, Raheem Shahzad, Ihsan Ullah, Abdur Rahim Khan, In-Jung Lee

Affiliation(s):  School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea; more

Corresponding email(s):   ijlee@knu.ac.kr

Key Words:  Paecilomyces formosus LWL1, Plant-growth promotion, Heat-stress mitigation, Phytohormones, Organic acids, Endophytes


Muhammad Waqas, Abdul Latif Khan, Raheem Shahzad, Ihsan Ullah, Abdur Rahim Khan, In-Jung Lee. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress[J]. Journal of Zhejiang University Science B, 2015, 16(12): 1011-1018.

@article{title="Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress",
author="Muhammad Waqas, Abdul Latif Khan, Raheem Shahzad, Ihsan Ullah, Abdur Rahim Khan, In-Jung Lee",
journal="Journal of Zhejiang University Science B",
volume="16",
number="12",
pages="1011-1018",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500081"
}

%0 Journal Article
%T Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress
%A Muhammad Waqas
%A Abdul Latif Khan
%A Raheem Shahzad
%A Ihsan Ullah
%A Abdur Rahim Khan
%A In-Jung Lee
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 12
%P 1011-1018
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500081

TY - JOUR
T1 - Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress
A1 - Muhammad Waqas
A1 - Abdul Latif Khan
A1 - Raheem Shahzad
A1 - Ihsan Ullah
A1 - Abdur Rahim Khan
A1 - In-Jung Lee
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 12
SP - 1011
EP - 1018
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500081


Abstract: 
This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in controlled chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. formosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%–33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures.

持续高温胁迫环境下内生菌产生植物激素和有机酸促进粳稻生长的研究

目的:研究在高温胁迫环境下内生菌(Paecilomyces formosus LWL1)对粳稻生长的影响。
创新点:首次探讨P. formosus LWL1产生的植物激素和有机酸在缓解粳稻热应激方面的作用。
方法:比较正常和高温胁迫两种环境下,P. formosus LWL1对Dongjin粳稻植株的生长状况及内源性脱落酸、茉莉酸和总蛋白水平变化的作用。
结论:内生菌在正常和高温胁迫条件下均能显著提高植物生长情况,包括株高、鲜重、干重和叶绿素含量。内生菌组的植株具有更低的内源性胁迫信号化合物水平及提升的总蛋白量,表明其具有保护粳稻的作用。这种内生菌可能有利于作物在高温环境下生长的耐受性。

关键词:拟青霉菌;促进植物生长;热应激缓和;植物激素;有机酸;植物内生菌

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahemad, M., Kibret, M., 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ.-Sci., 26(1):1-20.

[2]Bita, C.E., Gerats, T., 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci., 4:273.

[3]Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1-2):248-254.

[4]Claeys, H., Bodt, S.D., Inzé, D., 2014. Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci., 19(4):231-239.

[5]Conrath, U., Beckers, G.J.M., Flors, V., et al., 2006. Priming: getting ready for battle. Mol. Plant-Microbe Inter., 19(10):1062-1071.

[6]Contreras-Cornejo, H.A., Macias-Rodriguez, L., Cortes-Penagos, C., et al., 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol., 149(3):1579-1592.

[7]Contreras-Cornejo, H.A., Macías-Rodríguez, L., Alfaro-Cuevas, R., et al., 2014. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol. Plant-Microbe Inter., 27(6):503-514.

[8]Folsom, J.J., Begcy, K., Hao, X., et al., 2014. Rice Fertilization-Independent Endosperm1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiol., 165(1):238-248.

[9]Fragkostefanakis, S., Röth, S., Schleiff, E., et al., 2014. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ., 38(9):1881-1895.

[10]Hasanuzzaman, M., Nahar, K., Alam, M.M., et al., 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci., 14(5):9643-9684.

[11]Higgins, K.L., Arnold, A.E., Coley, P.D., et al., 2014. Communities of fungal endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol., 8:1-11.

[12]Kamboj, J.S., Browning, G., Blake, P.S., et al., 1999. GC-MS SIM analysis of abscisic acid and indole-3-acetic acid in shoot bark of apple root stocks. J. Plant Growth Regul., 28(1):21-27.

[13]Khan, A.L., Lee, I.J., 2013. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol., 13:86.

[14]Khan, A.L., Hamayun, M., Radhakrishnan, R., et al., 2012. Mutualistic association of Paecilomyces formosus LHL10 offers thermotolerance to Cucumis sativus. Antonie van Leeuwenhoek, 101(2):267-279.

[15]Khan, A.L., Waqas, M., Lee, I.J., 2014. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. J. Plant Res., 128(2):259-268.

[16]Kumar, S., Kaushal, N., Nayyar, H., et al., 2012. Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiol. Plant., 34(5):1651-1658.

[17]Larkindale, J., Knight, M.R., 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol., 128(2):682-695.

[18]Larkindale, J., Hall, J.D., Knight, M.R., et al., 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol., 138(2):882-897.

[19]Li, D.M., Guo, Y.K., Li, Q., et al., 2012. The pretreatment of cucumber with methyl jasmonate regulates antioxidant enzyme activities and protects chloroplast and mitochondrial ultrastructure in chilling-stressed leaves. Sci. Hortic., 143:135-143.

[20]Lin, M.Y., Chai, K.H., Ko, S.S., et al., 2014. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol., 164(4):2045-2053.

[21]Navarro-Meléndez, A.L., Heil, M., 2014. Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with jasmonate-dependent indirect defenses of their host, Lima bean (Phaseolus lunatus). J. Chem. Ecol., 40(7):816-825.

[22]Qi, Q.G., Rose, P.A., Abrams, G.D., et al., 1998. Abscisic acid metabolism, 3-ketoacyl-coenzyme a synthase gene expression and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol., 117(3):979-987.

[23]Redman, R.S., Sheehan, K.B., Stout, R.G., et al., 2002. Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science, 298(5598):1581.

[24]Redman, R.S., Kim, Y.O., Woodward, C.J.D.A., et al., 2011. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE, 6(7):14823.

[25]Rodrı́guez, H., Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv., 17(4-5):319-339.

[26]Sgobba, A., Paradiso, A., Dipierro, S., et al., 2015. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress. Physiol. Plant., 153(1):68-78.

[27]Waqas, M., Khan, A.L., Lee, I.J., 2014a. Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J. Plant Inter., 9(1):478-487.

[28]Waqas, M., Khan, A.L., Kang, S.M., et al., 2014b. Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol. Fert. Soils, 50(7):1155-1167.

[29]Yang, D.L., Yao, J., Mei, C.S., et al., 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. PNAS, 109:1192-1200.

[30]Yoshida, S., Ohnishi, Y., Kitagishi, K., 1959. Role of silicon in rice nutrition. Soil Plant Food, 5(3):127-133.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE