CLC number: TS221
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-10-18
Cited: 0
Clicked: 4516
Hong-xia Feng, Rokayya Sam, Lian-zhou Jiang, Yang Li, Wen-ming Cao. High-performance size-exclusion chromatography studies on the formation and distribution of polar compounds in camellia seed oil during heating[J]. Journal of Zhejiang University Science B, 2016, 17(11): 882-891.
@article{title="High-performance size-exclusion chromatography studies on the formation and distribution of polar compounds in camellia seed oil during heating",
author="Hong-xia Feng, Rokayya Sam, Lian-zhou Jiang, Yang Li, Wen-ming Cao",
journal="Journal of Zhejiang University Science B",
volume="17",
number="11",
pages="882-891",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600173"
}
%0 Journal Article
%T High-performance size-exclusion chromatography studies on the formation and distribution of polar compounds in camellia seed oil during heating
%A Hong-xia Feng
%A Rokayya Sam
%A Lian-zhou Jiang
%A Yang Li
%A Wen-ming Cao
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 11
%P 882-891
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600173
TY - JOUR
T1 - High-performance size-exclusion chromatography studies on the formation and distribution of polar compounds in camellia seed oil during heating
A1 - Hong-xia Feng
A1 - Rokayya Sam
A1 - Lian-zhou Jiang
A1 - Yang Li
A1 - Wen-ming Cao
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 11
SP - 882
EP - 891
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600173
Abstract: camellia seed oil (CSO) is rich in oleic acid and has a high number of active components, which give the oil high nutritional value and a variety of biological activity. The aim of the present study was to determine the changes in the content and distribution of total polar compounds (TPC) in CSO during heating. TPC were isolated by means of preparative flash chromatography and further analyzed by high-performance size-exclusion chromatography (HPSEC). The TPC content of CSO increased from 4.74% to 25.29%, showing a significantly lower formation rate as compared to that of extra virgin olive oil (EVOO) and soybean oil (SBO) during heating. Furthermore, heating also resulted in significant differences (P<0.05) in the distribution of TPC among these oils. Though the content of oxidized triacylglycerol dimers, oxidized triacylglycerol oligomers, and oxidized triacylglycerol monomers significantly increased in all these oils, their increased percentages were much less in CSO than those in EVOO, indicating that CSO has a greater ability to resist oxidation. This work may be useful for the food oil industry and consumers in helping to choose the correct oil and to decide on the useful lifetime of the oil.
[1]Arroyo, R., Cuesta, C., Garrido-Polonio, C., et al., 1992. High-performance size-exclusion chromatographic studies on polar components formed in sunflower oil used for frying. J. Am. Oil Chem. Soc., 69(6):557-563.
[2]Barrera-Arellano, D., Ruiz-Méndez, V., Velasco, J., et al., 2002. Loss of tocopherols and formation of degradation compounds at frying temperatures in oils differing in degree of unsaturation and natural antioxidant content. J. Sci. Food Agric., 82(14):1696-1702.
[3]Caldwell, J.D., Cooke, B.S., Greer, M.K., 2011. High performance liquid chromatography-size exclusion chromatography for rapid analysis of total polar compounds in used frying oils. J. Am. Oil Chem. Soc., 88(11):1669-1674.
[4]Cao, W.M., Zhang, K.Y., Xue, B., et al., 2013. Determination of oxidized triacylglycerol polymers by preparative flash chromatography and high-performance size-exclusion chromatography. Asian J. Chem., 25(16):9189-9194.
[5]Caponio, F., Gomes, T., Pasqualone, A., et al., 2007. Use of the high performance size exclusion chromatography analysis for the measurement of the degree of hydrolytic and oxidative degradation of the lipid fraction of biscuits. Food Chem., 102(1):232-236.
[6]Caponio, F., Summo, C., Bilancia, M.T., et al., 2011. High performance size-exclusion chromatography analysis of polar compounds applied to refined, mild deodorized, extra virgin olive oils and their blends: an approach to their differentiation, LWT-Food Sci. Technol., 44(8):1726-1730.
[7]Correia, A.C., Dubreucq, E., Ferreira-Dias, S., et al., 2015. Rapid quantification of polar compounds in thermo-oxidized oils by hptlc-densitometry. Eur. J. Lipid Sci. Technol., 117(3):311-319.
[8]Dobarganes, M., Pérez-Camino, M., Márquez-Ruíz, G., 1988. High performance size exclusion chromatography of polar compounds in heated and non-heated fats. Lipid/Fett, 90(8):308-311.
[9]Farhoosh, R., Tavassoli-Kafrani, M.H., 2010. Polar compounds distribution of sunflower oil as affected by unsaponifiable matters of bene hull oil (BHO) and tertiary-butylhydroquinone (TBHQ) during deep-frying. Food Chem., 122(1):381-385.
[10]Gomes, T., Delcuratolo, D., Paradiso, V.M., et al., 2011. Pro-oxidant activity of oxidized triacylglycerols in olive oil and comparison with pro-oxidant action of polar triacylglycerol oligopolymers. LWT-Food Sci. Technol., 44(4):1236-1239.
[11]Gomes, T., Caponio, F., Durante, V., et al., 2012. The amounts of oxidized and oligopolymeric triacylglycerols in refined olive oil as a function of crude oil oxidative level. LWT-Food Sci. Technol., 45(2):186-190.
[12]Guillén, M.D., Uriarte, P.S., 2013. Relationships between the evolution of the percentage in weight of polar compounds and that of the molar percentage of acyl groups of edible oils submitted to frying temperature. Food Chem., 138(2-3):1351-1354.
[13]Hai, Z., Wang, J., 2006. Detection of adulteration in camellia seed oil and sesame oil using an electronic nose. Eur. J. Lipid Sci. Technol., 108(2):116-124.
[14]Li, Y., Zhang, Y., Wang, M., et al., 2013. Simplex-centroid mixture design applied to the aqueous enzymatic extraction of fatty acid-balanced oil from mixed seeds. J. Am. Oil Chem. Soc., 90(3):349-357.
[15]Lim, J., Kim, Y.S., Kim, S.H., et al., 2013. Triglyceride enhances susceptibility to TNF-α-induced cell death in THP-1 cells. Genes Genom., 36(1):87-93.
[16]Marmesat, S., Morales, A., Velasco, J., et al., 2012. Influence of fatty acid composition on chemical changes in blends of sunflower oils during thermoxidation and frying. Food Chem., 135(4):2333-2339.
[17]Martín-Polvillo, M., Márquez-Ruiz, G., Dobarganes, M.C., 2004. Oxidative stability of sunflower oils differing in unsaturation degree during long-term storage at room temperature. J. Am. Oil Chem. Soc., 81(6):577-583.
[18]Matthäus, B., 2007. Use of palm oil for frying in comparison with other high-stability oils. Eur. J. Lipid Sci. Technol., 109(4):400-409.
[19]Mistry, B.S., Min, D.B., 1988. Prooxidant effects of monoglycerides and diglycerides in soybean oil. J. Food Sci., 53(6):1896-1897.
[20]Na, Z., 2008. A review on the refinement of the camellia oleifera seed oil and its application in cosmetics. Guangdong Forestry Sci. Technol., 24(4):87-91 (in Chinese).
[21]Ng, C.Y., Leong, X.F., Adam, S.M., et al., 2014. Reprint of “heated vegetable oils and cardiovascular disease risk factors”. Vasc. Pharmacol., 62(1):38-46.
[22]Pantzaris, T., 1998. Comparison of monounsaturated and polyunsaturated oils in continuous frying. Grasas Aceites, 49(3-4):319-325.
[23]Paquot, C., Hautfenne, A., 1987. IUPAC: Standard Methods for the Analysis of Oils, Fats, and Derivatives. Blackwell Scientific Publications, Oxford.
[24]Paradiso, V.M., Gomes, T., Nasti, R., et al., 2010. Effects of free fatty acids on the oxidative processes in purified olive oil. Food Res. Int., 43(5):1389-1394.
[25]Romero, A., Cuesta, C., Sánchez-Muniz, F., 1995. Quantitation and distribution of polar compounds in an extra virgin olive oil used in fryings with turnover of fresh oil. Lipid/Fett, 97(11):403-407.
[26]Salinero, C., Feas, X., Mansilla, J.P., et al., 2012. 1H-nuclear magnetic resonance analysis of the triacylglyceride composition of cold-pressed oil from Camellia japonica. Molecules, 17(6):6716-6727.
[27]Su, M.H., Shih, M.C., Lin, K.H., 2014. Chemical composition of seed oils in native taiwanese camellia species. Food Chem., 156(0):369-373.
[28]Wang, X.Q., Liang, X.Q., Zhao, J., et al., 2014. Cultivar characterization of tea seed oils by their active components and antioxidant capacity. J. Am. Oil Chem. Soc., 91(4):629-639.
[29]Wang, Y.F., Wang, J., Wu, J., et al., 2014. In vitro antioxidant activity and potential inhibitory action against α-glucosidase of polysaccharides from fruit peel of tea (Camellia sinensis L.). J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(2):173-180.
[30]Weisshaar, R., 2014. Quality control of used deep-frying oils. Eur. J. Lipid Sci. Technol., 116(6):716-722.
[31]Wenci, C., 2014. Analysis and Cytotoxicity Evaluation of Polar Components in Frying Oil. MS Thesis, Jiangnan University, Wuxi, China (in Chinese).
[32]Zeb, A., 2012. Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography-mass spectrometry. Chem. Phys. Lipids, 165(5):608-614.
Open peer comments: Debate/Discuss/Question/Opinion
<1>