CLC number: R654
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-06-13
Cited: 0
Clicked: 4275
Radosław Wieczór, Anna Maria Wieczór, Arleta Kulwas, Grzegorz Pulkowski, Jacek Budzyński, Danuta Rość. Coexistence of proangiogenic potential and increased MMP-9, TIMP-1, and TIMP-2 levels in the plasma of patients with critical limb ischemia[J]. Journal of Zhejiang University Science B, 2019, 20(8): 687-692.
@article{title="Coexistence of proangiogenic potential and increased MMP-9, TIMP-1, and TIMP-2 levels in the plasma of patients with critical limb ischemia",
author="Radosław Wieczór, Anna Maria Wieczór, Arleta Kulwas, Grzegorz Pulkowski, Jacek Budzyński, Danuta Rość",
journal="Journal of Zhejiang University Science B",
volume="20",
number="8",
pages="687-692",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1800373"
}
%0 Journal Article
%T Coexistence of proangiogenic potential and increased MMP-9, TIMP-1, and TIMP-2 levels in the plasma of patients with critical limb ischemia
%A Radosław Wieczór
%A Anna Maria Wieczór
%A Arleta Kulwas
%A Grzegorz Pulkowski
%A Jacek Budzyński
%A Danuta Rość
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 8
%P 687-692
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1800373
TY - JOUR
T1 - Coexistence of proangiogenic potential and increased MMP-9, TIMP-1, and TIMP-2 levels in the plasma of patients with critical limb ischemia
A1 - Radosław Wieczór
A1 - Anna Maria Wieczór
A1 - Arleta Kulwas
A1 - Grzegorz Pulkowski
A1 - Jacek Budzyński
A1 - Danuta Rość
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 8
SP - 687
EP - 692
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1800373
Abstract: The objective of this study was to assess the angiogenic potential expressed as a quotient of vascular endothelial growth factor A (VEGF-A), as an indicator of proangiogenic activity, and the circulating receptors (soluble VEGF receptor protein R1 (sVEGFR-1) and sVEGFR-2), as indicators of the effect of angiogenic inhibition, depending on the concentrations of matrix metalloproteinase 2 (MMP-2) and MMP-9 and their tissue inhibitor 1 (TIMP-1) and TIMP-2 in the plasma of patients with lower extremity artery disease (LEAD). These blood parameters in patients with intermittent claudication (IC) and critical limb ischemia (CLI) were compared for select clinical and biochemical features. Stimulation of angiogenesis in the plasma of individuals with LEAD was evident as indicated by the significant increase in VEGF-A concentration along with reduced inhibition depending on circulating receptors sVEGFR-1 and sVEGFR-2. Critical ischemia was associated with higher VEGF-A, MMP-9, TIMP-1, and TIMP-2 concentrations than in the case of IC.
[1]Baczynska D, Michalowska D, Barc P, et al., 2016. The expression profile of angiogenic genes in critical limb ischemia popliteal arteries. J Physiol Pharmacol, 67(3):353-362.
[2]Baum O, Ganster M, Baumgartner I, et al., 2007. Basement membrane remodeling in skeletal muscles of patients with limb ischemia involves regulation of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases. J Vasc Res, 44(3):202-213.
[3]Bogaczewicz J, Dudek W, Zubilewicz T, et al., 2006. The role of matrix metalloproteinases and their tissue inhibitors in angiogenesis. Pol Mer Lek, 21(121):80-85 (in Polish).
[4]Busti C, Falcinelli E, Momi S, et al., 2010. Matrix metalloproteinases and peripheral arterial disease. Int Emerg Med, 5(1):13-25.
[5]Chase AJ, Newby AC, 2003. Regulation of matrix metalloproteinase (matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodelling. J Vasc Res, 40(4):329-343.
[6]de Caridi G, Massara M, Spinelli F, et al., 2016. Matrix metalloproteinases and risk stratification in patients undergoing surgical revascularisation for critical limb ischaemia. Int Wound J, 13(4):493-499.
[7]Findley CM, Mitchell RG, Duscha BD, et al., 2008. Plasma levels of soluble Tie2 and vascular endothelial growth factor distinguish critical limb ischemia from intermittent claudication in patients with peripheral arterial disease. J Am Coll Cardiol, 52(5):387-393.
[8]Fink K, Boratyński J, 2012. The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis. Post Hig Med Dosw, 66:609-628.
[9]Groblewska M, Tycińska A, Mroczko B, et al., 2011. The role of matrix metalloproteinases in cardiovascular diseases. Pol Merk Lek, 30(178):235-240 (in Polish).
[10]Herman MP, Sukhova GK, Kisiel W, et al., 2001. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest, 107(9):1117-1126.
[11]Hobeika MJ, Edlin RS, Muhs BE, et al., 2008. Matrix metalloproteinases in critical limb ischemia. J Surg Res, 149(1):148-154.
[12]Hrabec E, Naduk J, Strek M, et al., 2007. Type IV collagenases (MMP-2 and MMP-9) and their substrates-intracellular proteins, hormones, cytokines, chemokines and their receptors. Post Biochem, 53(1):37-45 (in Polish).
[13]Jazwa A, Florczyk U, Grochot-Przeczek A, et al., 2016. Limb ischemia and vessel regeneration: is there a role for VEGF? Vascul Pharmacol, 86:18-30.
[14]Kugler A, 1999. Matrix metalloproteinases and their inhibitors. Anticancer Res, 19(2C):1589-1592.
[15]Lalu MM, Pasini E, Schulze CJ, et al., 2005. Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart. Eur Heart J, 26(1):27-35.
[16]Lipka D, Boratyński J, 2008. Metalloproteinases. Structure and function. Post Hig Med Dosw, 62:328-336 (in Polish).
[17]Liu P, Sun M, Sader S, 2006. Matrix metalloproteinases in cardiovascular disease. Can J Cardiol, 22(Suppl B):25B-30B.
[18]Rajzer M, Wojciechowska W, Kameczura T, et al., 2017. The effect of antihypertensive treatment on arterial stiffness and serum concentration of selected matrix metalloproteinases. Arch Med Sci, 13(4):760-770.
[19]Rundhaug JE, 2005. Matrix metalloproteinases and angiogenesis. J Cell Mol Med, 9(2):267-285.
[20]Signorelli SS, Anzaldi M, Libra M, et al., 2016. Plasma levels of inflammatory biomarkers in peripheral arterial disease: results of a cohort study. Angiology, 67(9):870-874.
[21]Stehr A, Töpel I, Müller S, et al., 2010. VEGF: a surrogate marker for peripheral vascular disease. Eur J Vasc Endovasc Surg, 39(3):330-332.
[22]Tayebjee MH, Tan KT, MacFadyen RJ, et al., 2005. Abnormal circulating levels of metalloprotease 9 and its tissue inhibitor 1 in angiographically proven peripheral arterial disease: relationship to disease severity. J Intern Med, 257(1):110-116.
[23]Vitlianova K, Georgieva J, Milanova M, et al., 2015. Blood pressure control predicts plasma matrix metalloproteinase-9 in diabetes mellitus type II. Arch Med Sci, 11(1):85-91.
[24]Wu HY, Shou XL, Liang L, et al., 2016. Correlation between plasma angiopoietin-1, angiopoietin-2 and matrix metalloproteinase-2 in coronary heart disease. Arch Med Sci, 12(6):1214-1219.
[25]Zawierucha P, Kempisty B, Sosińska P, et al., 2012. Molecular aspects of angiogenesis and its role in atherosclerosis. Post Biol Kom, 39(4):589-610 (in Polish).
[26]List of electronic supplementary materials
[27]Table S1 Characteristics of the study group
Open peer comments: Debate/Discuss/Question/Opinion
<1>