CLC number: R587.1; R392.11; G353.11
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-02-03
Cited: 0
Clicked: 2940
Zhi-Feng Zhou, Lei Jiang, Qing Zhao, Yu Wang, Jing Zhou, Qin-Kai Chen, Jin-Lei Lv. Roles of pattern recognition receptors in diabetic nephropathy[J]. Journal of Zhejiang University Science B, 2020, 21(3): 192-203.
@article{title="Roles of pattern recognition receptors in diabetic nephropathy",
author="Zhi-Feng Zhou, Lei Jiang, Qing Zhao, Yu Wang, Jing Zhou, Qin-Kai Chen, Jin-Lei Lv",
journal="Journal of Zhejiang University Science B",
volume="21",
number="3",
pages="192-203",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900490"
}
%0 Journal Article
%T Roles of pattern recognition receptors in diabetic nephropathy
%A Zhi-Feng Zhou
%A Lei Jiang
%A Qing Zhao
%A Yu Wang
%A Jing Zhou
%A Qin-Kai Chen
%A Jin-Lei Lv
%J Journal of Zhejiang University SCIENCE B
%V 21
%N 3
%P 192-203
%@ 1673-1581
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900490
TY - JOUR
T1 - Roles of pattern recognition receptors in diabetic nephropathy
A1 - Zhi-Feng Zhou
A1 - Lei Jiang
A1 - Qing Zhao
A1 - Yu Wang
A1 - Jing Zhou
A1 - Qin-Kai Chen
A1 - Jin-Lei Lv
J0 - Journal of Zhejiang University Science B
VL - 21
IS - 3
SP - 192
EP - 203
%@ 1673-1581
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900490
Abstract: diabetic nephropathy (DN) is currently the most common complication of diabetes. It is considered to be one of the leading causes of end-stage renal disease (ESRD) and affects many diabetic patients. The pathogenesis of DN is extremely complex and has not yet been clarified; however, in recent years, increasing evidence has shown the important role of innate immunity in DN pathogenesis. pattern recognition receptors (PRRs) are important components of the innate immune system and have a significant impact on the occurrence and development of DN. In this review, we classify PRRs into secretory, endocytic, and signal transduction PRRs according to the relationship between the PRRs and subcellular compartments. PRRs can recognize related pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), thus triggering a series of inflammatory responses, promoting renal fibrosis, and finally causing renal impairment. In this review, we describe the proposed role of each type of PRRs in the development and progression of DN.
[1]Abbas SA, Raza ST, Mir SS, et al., 2018. Role of variants rs5030717 and rs5030718 of TLR4 in the risk prediction of nephropathy, hypertension and dyslipidaemia in type 2 diabetes mellitus. Br J Biomed Sci, 75(4):163-168.
[2]Awad AS, You HN, Gao T, et al., 2015. Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury. Kidney Int, 88(4):722-733.
[3]Axelgaard E, Østergaard JA, Thiel S, et al., 2017a. Diabetes is associated with increased autoreactivity of mannan-binding lectin. J Diabetes Res, 2017:6368780.
[4]Axelgaard E, Østergaard JA, Haxha S, et al., 2017b. Global autorecognition and activation of complement by mannan-binding lectin in a mouse model of type 1 diabetes. Mediators Inflamm, 2017:9403754.
[5]Bidula S, Sexton DW, Schelenz S, 2019. Ficolins and the recognition of pathogenic microorganisms: an overview of the innate immune response and contribution of single nucleotide polymorphisms. J Immunol Res, 2019: 3205072.
[6]Bijkerk R, van der Pol P, Khairoun M, et al., 2016. Simultaneous pancreas-kidney transplantation in patients with type 1 diabetes reverses elevated MBL levels in association with MBL2 genotype and VEGF expression. Diabetologia, 59(4):853-858.
[7]Chen KH, Zhang JG, Zhang WW, et al., 2013. ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol, 45(5):932-943.
[8]Chen XH, Luo J, Wu MM, et al., 2018. Study on association of pentraxin 3 and diabetic nephropathy in a rat model. J Diabetes Res, 2018:8968573.
[9]Collins AJ, Foley RN, Chavers B, et al., 2012. United States Renal Data System 2011 Annual Data Report: atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis, 59(1 Suppl 1):A7.
[10]D'addio F, Trevisani A, Nasr MB, et al., 2014. Harnessing the immunological properties of stem cells as a therapeutic option for diabetic nephropathy. Acta Diabetol, 51(6):897-904.
[11]Ding T, Chen W, Li J, et al., 2017. High glucose induces mouse mesangial cell overproliferation via inhibition of hydrogen sulfide synthesis in a TLR-4-dependent manner. Cell Physiol Biochem, 41(3):1035-1043.
[12]Dobó J, Harmat V, Beinrohr L, et al., 2009. MASP-1, a promiscuous complement protease: structure of its catalytic region reveals the basis of its broad specificity. J Immunol, 183(2):1207-1214.
[13]Dowling JK, O'Neill LA, 2012. Biochemical regulation of the inflammasome. Crit Rev Biochem Mol Biol, 47(5):424-443.
[14]Feng L, Gu CW, Li YX, et al., 2017. High glucose promotes CD36 expression by upregulating peroxisome proliferator-activated receptor γ levels to exacerbate lipid deposition in renal tubular cells. BioMed Res Int, 2017:1414070.
[15]Feng YY, Yang SL, Ma YX, et al., 2015. Role of Toll-like receptors in diabetic renal lesions in a miniature pig model. Sci Adv, 1(5):e1400183.
[16]Fernandes-Alnemri T, Yu JW, Datta P, et al., 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature, 458(7237):509-513.
[17]Flyvbjerg A, 2017. The role of the complement system in diabetic nephropathy. Nat Rev Nephrol, 13(5):311-318.
[18]Guo CC, Zhang LJ, Nie LH, et al., 2016. Association of polymorphisms in the MyD88, IRAK4 and TRAF6 genes and susceptibility to type 2 diabetes mellitus and diabetic nephropathy in a southern Han Chinese population. Mol Cell Endocrinol, 429:114-119.
[19]Guo XX, Wang Y, Wang K, et al., 2018. Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. J Zhejiang Univ Sci-B (Biomed & Biotechnol), 19(7):559-569.
[20]Gutwein P, Abdel-Bakky MS, Doberstein K, et al., 2009. CXCL16 and oxLDL are induced in the onset of diabetic nephropathy. J Cell Mol Med, 13(9b):3809-3825.
[21]Gysler SM, Mulla MJ, Guerra M, et al., 2016. Antiphospholipid antibody-induced miR-146a-3p drives trophoblast interleukin-8 secretion through activation of Toll-like receptor 8. Mol Hum Reprod, 22(7):465-474.
[22]Han F, Gao Y, Ding CG, et al., 2018. Knockdown of NLRC5 attenuates renal I/R injury in vitro through the activation of PI3K/Akt signaling pathway. Biomed Pharmacother, 103:222-227.
[23]Han YH, Xu XX, Tang CY, et al., 2018. Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ROS-TXNIP-NLRP3 biological axis. Redox Biol, 16:32-46.
[24]Henriksen ML, Brandt J, Andrieu JP, et al., 2013. Heteromeric complexes of native collectin kidney 1 and collectin liver 1 are found in the circulation with MASPs and activate the complement system. J Immunol, 191(12):6117-6127.
[25]Hisano S, Matsushita M, Fujita T, et al., 2007. Activation of the lectin complement pathway in post-streptococcal acute glomerulonephritis. Pathol Int, 57(6):351-357.
[26]Horiuchi S, Unno Y, Usui H, et al., 2005. Pathological roles of advanced glycation end product receptors SR-A and CD36. Ann N Y Acad Sci, 1043(1):671-675.
[27]Hou YJ, Wu M, Wei JY, et al., 2015. CD36 is involved in high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells. Biochem Biophys Res Commun, 468(1-2):281-286.
[28]Hu ZB, Ma KL, Zhang Y, et al., 2018. Inflammation-activated CXCL16 pathway contributes to tubulointerstitial injury in mouse diabetic nephropathy. Acta Pharmacol Sin, 39(6):1022-1033.
[29]Huang W, Gou F, Long Y, et al., 2016. High glucose and lipopolysaccharide activate NOD1-RICK-NF-κB inflammatory signaling in mesangial cells. Exp Clin Endocrinol Diabetes, 124(8):512-517.
[30]Huang YQ, Gou R, Diao YS, et al., 2014. Charlson comorbidity index helps predict the risk of mortality for patients with type 2 diabetic nephropathy. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(1):58-66.
[31]Janowski AM, Kolb R, Zhang WZ, et al., 2013. Beneficial and detrimental roles of NLRs in carcinogenesis. Front Immunol, 4:370.
[32]Jheng HF, Tsai PJ, Chuang YL, et al., 2015. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis Model Mech, 8(10):1311-1321.
[33]Komada T, Chung H, Lau A, et al., 2018. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. J Am Soc Nephrol, 29(4):1165-1181.
[34]Landis RC, Quimby KR, Greenidge AR, 2018. M1/M2 macrophages in diabetic nephropathy: Nrf2/HO-1 as therapeutic targets. Curr Pharm Des, 24(20):2241-2249.
[35]Lin M, Tang SCW, 2014. Toll-like receptors: sensing and reacting to diabetic injury in the kidney. Nephrol Dial Transplant, 29(4):746-754.
[36]Liu Q, Jiang CY, Chen BX, et al., 2015. The association between high-sensitivity C-reactive protein concentration and diabetic nephropathy: a meta-analysis. Eur Rev Med Pharmacol Sci, 19(23):4558-4568.
[37]Liu YW, Hao YC, Chen YJ, et al., 2018. Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats. Phytother Res, 32(8):1574-1582.
[38]Lu L, Peng WH, Wang W, et al., 2011. Effects of atorvastatin on progression of diabetic nephropathy and local RAGE and soluble RAGE expressions in rats. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 12(8):652-659.
[39]Luan PP, Zhuang JH, Zou J, et al., 2018. NLRC5 deficiency ameliorates diabetic nephropathy through alleviating inflammation. FASEB J, 32(2):1070-1084.
[40]Masters SL, 2013. Specific inflammasomes in complex diseases. Clin Immunol, 147(3):223-228.
[41]McKnight AJ, Duffy S, Maxwell AP, 2015. Genetics of diabetic nephropathy: a long road of discovery. Curr Diab Rep, 15(7):41.
[42]Medzhitov R, Janeway CA Jr, 1997. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol, 9(1):4-9.
[43]Niewczas MA, Pavkov ME, Skupien J, et al., 2019. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med, 25(5):805-813.
[44]Nosadini R, Tonolo G, 2011. Role of oxidized low density lipoproteins and free fatty acids in the pathogenesis of glomerulopathy and tubulointerstitial lesions in type 2 diabetes. Nutr Metab Cardiovasc Dis, 21(2):79-85.
[45]Osborn O, Olefsky JM, 2012. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med, 18(3):363-374.
[46]Østergaard JA, Bjerre M, Ramachandrarao SP, et al., 2012. Mannan-binding lectin in diabetic kidney disease: the impact of mouse genetics in a type 1 diabetes model. Exp Diabetes Res, 2012:678381.
[47]Østergaard JA, Bjerre M, Dagnaes-Hansen F, et al., 2013. Diabetes-induced changes in mannan-binding lectin levels and complement activation in a mouse model of type 1 diabetes. Scand J Immunol, 77(3):187-194.
[48]Østergaard JA, Thiel S, Hovind P, et al., 2014. Association of the pattern recognition molecule H-ficolin with incident microalbuminuria in an inception cohort of newly diagnosed type 1 diabetic patients: an 18 year follow-up study. Diabetologia, 57(10):2201-2207.
[49]Østergaard JA, Thiel S, Hoffmann-Petersen IT, et al., 2017. Incident microalbuminuria and complement factor mannan-binding lectin-associated protein 19 in people with newly diagnosed type 1 diabetes. Diabetes Metab Res Rev, 33(5):e2895.
[50]Overgaard AJ, McGuire JN, Hovind P, et al., 2013. Serum amyloid A and C-reactive protein levels may predict microalbuminuria and macroalbuminuria in newly diagnosed type 1 diabetic patients. J Diabetes Complications, 27(1):59-63.
[51]Pombinho R, Sousa S, Cabanes D, 2018. Scavenger receptors: promiscuous players during microbial pathogenesis. Crit Rev Microbiol, 44(6):685-700.
[52]Qiao YC, Tian XX, Men L, et al., 2018. Spleen tyrosine kinase promotes NLR family pyrin domain containing 3 inflammasome-mediated IL-1β secretion via c-Jun N-terminal kinase activation and cell apoptosis during diabetic nephropathy. Mol Med Rep, 18(2):1995-2008.
[53]Rao V, Tan SH, Candasamy M, et al., 2019. Diabetic nephropathy: an update on pathogenesis and drug development. Diabetes Metab Syndr, 13(1):754-762.
[54]Shaheer AK, Tharayil JK, Krishna PW, 2017. A comparative study of high sensitivity C-reactive protein and metabolic variables in type 2 diabetes mellitus with and without nephropathy. J Clin Diagn Res, 11(9):BC01-BC04.
[55]Shang J, Wan Q, Wang XJ, et al., 2015. Identification of NOD2 as a novel target of RNA-binding protein HuR: evidence from NADPH oxidase-mediated HuR signaling in diabetic nephropathy. Free Radic Biol Med, 79:217-227.
[56]Shang J, Zhang Y, Jiang YM, et al., 2017. NOD2 promotes endothelial-to-mesenchymal transition of glomerular endothelial cells via MEK/ERK signaling pathway in diabetic nephropathy. Biochem Biophys Res Commun, 484(2):435-441.
[57]Sifuentes-Franco S, Padilla-Tejeda DE, Carrillo-Ibarra S, et al., 2018. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol, 2018: 1875870.
[58]Soares JLS, Fernandes FP, Patente TA, et al., 2018. Gain-of-function variants in NLRP1 protect against the development of diabetic kidney disease: NLRP1 inflammasome role in metabolic stress sensing? Clin Immunol, 187:46-49.
[59]Subhash V, Monika S, Richa S, et al., 2018. Distribution of single nucleotide polymorphisms and protein domain architecture of Toll-like receptor-2 in Pahari cattle (Indian non-descript indigenous breed). Res Vet Sci, 117:144-149.
[60]Sun HB, Tian J, Xian WH, et al., 2015. Pentraxin-3 attenuates renal damage in diabetic nephropathy by promoting M2 macrophage differentiation. Inflammation, 38(5):1739-1747.
[61]Sun L, Wen JH, Sun HL, et al., 2012. Perindopril attenuates renal tubulointerstitium injury by inhibiting scavenger receptor A over-expression in diabetic rats. J Endocrinol Invest, 35(5):511-515.
[62]Tang Y, Fung E, Xu AP, et al., 2017. C-reactive protein and ageing. Clin Exp Pharmacol Physiol, 44(S1):9-14.
[63]Thakur V, Nargis S, Gonzalez M, et al., 2017. Role of glycyrrhizin in the reduction of inflammation in diabetic kidney disease. Nephron, 137(2):137-147.
[64]Tsun JGS, Shiu SWM, Wong Y, et al., 2013. Impact of serum amyloid A on cellular cholesterol efflux to serum in type 2 diabetes mellitus. Atherosclerosis, 231(2):405-410.
[65]Tsun JGS, Yung S, Chau MKM, et al., 2014. Cellular cholesterol transport proteins in diabetic nephropathy. PLoS ONE, 9(9):e105787.
[66]Usui HK, Shikata K, Sasaki M, et al., 2007. Macrophage scavenger receptor-A-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes, 56(2):363-372.
[67]Uzun S, Ozari M, Gursu M, et al., 2016. Changes in the inflammatory markers with advancing stages of diabetic nephropathy and the role of pentraxin-3. Ren Fail, 38(8):1193-1198.
[68]Wada J, Makino H, 2016. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol, 12(1):13-26.
[69]Wang C, Hou XX, Rui HL, et al., 2018. Artificially cultivated Ophiocordyceps sinensis alleviates diabetic nephropathy and its podocyte injury via inhibiting P2X7R expression and NLRP3 inflammasome activation. J Diabetes Res, 2018:1390418.
[70]Wang HQ, Wang SS, Chiufai K, et al., 2019. Umbelliferone ameliorates renal function in diabetic nephropathy rats through regulating inflammation and TLR/NF-κB pathway. Chin J Nat Med, 17(5):346-354.
[71]Wang SF, Li YB, Fan JJ, et al., 2017. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation. Cell Death Dis, 8(7):e2937.
[72]Wilhelm I, Nyúl-Tóth A, Kozma M, et al., 2017. Role of pattern recognition receptors of the neurovascular unit in inflamm-aging. Am J Physiol Heart Circ Physiol, 313(5):H1000-H1012.
[73]Wu XH, Huang SM, Fan WX, et al., 2011. Influence of high glucose and mannose binding lectin complement pathway activation to IL-6 and TNF-alpha’s expression by human renal glomerular endothelial cells. J Sichuan Univ (Med Sci Ed), 42(1):90-94 (in Chinese).
[74]Yang WF, Han F, Zhang XH, et al., 2013. Extra-pulmonary tuberculosis infection in the dialysis patients with end stage renal diseases: case reports and literature review. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(1):76-82.
[75]Yang YL, Lin SH, Chuang LY, et al., 2007. CD36 is a novel and potential anti-fibrogenic target in albumin-induced renal proximal tubule fibrosis. J Cell Biochem, 101(3):735-744.
[76]Yang YX, Huang SM, Yan XY, et al., 2011. Relationship between activation of mannan-binding lectin complement and NF-κB in diabetic nephropathy. J Sichuan Univ (Med Sci Ed), 42(4):490-493 (in Chinese).
[77]Ye YN, Chen QZ, Li JM, et al., 2017. CXCL16 deficiency attenuates diabetic nephropathy through decreasing oxidative stress and inflammation. Biochem Biophys Res Commun, 491(3):848-854.
[78]Yilmaz MI, Axelsson J, Sonmez A, et al., 2009. Effect of renin angiotensin system blockade on pentraxin 3 levels in type-2 diabetic patients with proteinuria. Clin J Am Soc Nephrol, 4(3):535-541.
[79]Yilmaz MI, Carrero JJ, Martin-Ventura JL, et al., 2010. Combined therapy with renin-angiotensin system and calcium channel blockers in type 2 diabetic hypertensive patients with proteinuria: effects on soluble TWEAK, PTX3, and flow-mediated dilation. Clin J Am Soc Nephrol, 5(7):1174-1181.
[80]You YK, Huang XR, Chen HY, et al., 2016. C-reactive protein promotes diabetic kidney disease in db/db mice via the CD32b-Smad3-mTOR signaling pathway. Sci Rep, 6(1):26740.
[81]Yuan F, Kolb R, Pandey G, et al., 2016. Involvement of the NLRC4-inflammasome in diabetic nephropathy. PLoS ONE, 11(10):e0164135.
[82]Zhang H, Zhang R, Chen J, et al., 2017. High mobility group box1 inhibitor glycyrrhizic acid attenuates kidney injury in streptozotocin-induced diabetic rats. Kidney Blood Press Res, 42(5):894-904.
[83]Zhang L, Shen ZY, Wang K, et al., 2019. C-reactive protein exacerbates epithelial-mesenchymal transition through Wnt/ β-catenin and ERK signaling in streptozocin-induced diabetic nephropathy. FASEB J, 33(5):6551-6563.
[84]Zhang NN, Zhuang MQ, Ma AX, et al., 2013. Association of levels of mannose-binding lectin and the MBL2 gene with type 2 diabetes and diabetic nephropathy. PLoS ONE, 8(12):e83059.
[85]Zhao LP, Wu F, Jin LG, et al., 2014. Serum CXCL16 as a novel marker of renal injury in type 2 diabetes mellitus. PLoS ONE, 9(1):e87786.
[86]Zhao M, Han JG, 2018. Dendrobium officinale Kimura et Migo ameliorates insulin resistance in rats with diabetic nephropathy. Med Sci Monit Basic Res, 24:84-92.
[87]Zheng JM, Ren XG, Jiang ZH, et al., 2018. Lectin-induced renal local complement activation is involved in tubular interstitial injury in diabetic nephropathy. Clin Chim Acta, 482:65-73.
[88]Zheng SR, Coventry S, Cai L, et al., 2016. Renal protection by genetic deletion of the atypical chemokine receptor ACKR2 in diabetic OVE mice. J Diabetes Res, 2016: 5362506.
[89]Zhou HL, Tan KCB, Shiu SWM, et al., 2008. Cellular cholesterol efflux to serum is impaired in diabetic nephropathy. Diabetes Metab Res Rev, 24(8):617-623.
[90]Zhou LP, Huang W, Xu YH, et al., 2018. Sweet taste receptors mediated ROS-NLRP3 inflammasome signaling activation: implications for diabetic nephropathy. J Diabetes Res, 2018:7078214.
[91]Zhu H, Yu WH, Xie YY, et al., 2017. Association of pentraxin 3 gene polymorphisms with susceptibility to diabetic nephropathy. Med Sci Monit, 23:428-436.
[92]https://doi.org/10.12659/msm.902783
[93]Zhu XG, Shi J, Li HC, 2018. Liquiritigenin attenuates high glucose-induced mesangial matrix accumulation, oxidative stress, and inflammation by suppression of the NF-κB and NLRP3 inflammasome pathways. Biomed Pharmacother, 106:976-982.
Open peer comments: Debate/Discuss/Question/Opinion
<1>