Full Text:   <787>

Summary:  <198>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-08-19

Cited: 0

Clicked: 916

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2024 Vol.25 No.8 P.656-671

http://doi.org/10.1631/jzus.B2300322


Optogenetics in oral and craniofacial research


Author(s):  Qinmeng ZHANG, Luyao SONG, Mengdie FU, Jin HE, Guoli YANG, Zhiwei JIANG

Affiliation(s):  Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University,Hangzhou310000,China; more

Corresponding email(s):   guo_li1214@zju.edu.cn, jzw0913@zju.edu.cn

Key Words:  Lasers, Cell differentiation, Bacterial virulence, Nervous system, Neurophysiology, Behavioral science


Qinmeng ZHANG, Luyao SONG, Mengdie FU, Jin HE, Guoli YANG, Zhiwei JIANG. Optogenetics in oral and craniofacial research[J]. Journal of Zhejiang University Science B, 2024, 25(8): 656-671.

@article{title="Optogenetics in oral and craniofacial research",
author="Qinmeng ZHANG, Luyao SONG, Mengdie FU, Jin HE, Guoli YANG, Zhiwei JIANG",
journal="Journal of Zhejiang University Science B",
volume="25",
number="8",
pages="656-671",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300322"
}

%0 Journal Article
%T Optogenetics in oral and craniofacial research
%A Qinmeng ZHANG
%A Luyao SONG
%A Mengdie FU
%A Jin HE
%A Guoli YANG
%A Zhiwei JIANG
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 8
%P 656-671
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300322

TY - JOUR
T1 - Optogenetics in oral and craniofacial research
A1 - Qinmeng ZHANG
A1 - Luyao SONG
A1 - Mengdie FU
A1 - Jin HE
A1 - Guoli YANG
A1 - Zhiwei JIANG
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 8
SP - 656
EP - 671
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300322


Abstract: 
Optogenetics combines optics and genetic engineering to control specific gene expression and biological functions and has the advantages of precise spatiotemporal control, noninvasiveness, and high efficiency. Genetically modified photosensory sensors are engineered into proteins to modulate conformational changes with light stimulation. Therefore, optogenetic techniques can provide new insights into oral biological processes at different levels, ranging from the subcellular and cellular levels to neural circuits and behavioral models. Here, we introduce the origins of optogenetics and highlight the recent progress of optogenetic approaches in oral and craniofacial research, focusing on the ability to apply optogenetics to the study of basic scientific neural mechanisms and to establish different oral behavioral test models in vivo (orofacial movement, licking, eating, and drinking), such as channelrhodopsin (ChR), archaerhodopsin (Arch), and halorhodopsin fromNatronomonas pharaonis (NpHR). We also review the synergic and antagonistic effects of optogenetics in preclinical studies of trigeminal neuralgia and maxillofacial cellulitis. In addition, optogenetic tools have been used to control the neurogenic differentiation of dental pulp stem cells in translational studies. Although the scope of optogenetic tools is increasing, there are limited large animal experiments and clinical studies in dental research. Potential future directions include exploring therapeutic strategies for addressing loss of taste in patients with coronavirus disease 2019 (COVID-19), studying oral bacterial biofilms, enhancing craniomaxillofacial and periodontal tissue regeneration, and elucidating the possible pathogenesis of dry sockets, xerostomia, and burning mouth syndrome.

光遗传学在口腔和颌面部研究中的应用

张芩梦1,2,宋璐瑶2,傅梦蝶1,2,贺瑾1,2,杨国利1,2,姜治伟1,2
1浙江大学医学院附属口腔医院,浙江省口腔疾病临床研究中心,浙江省口腔生物医学研究重点实验室,浙江大学肿瘤中心,中国杭州市,310000
2浙江大学医学院,中国杭州市,310058
摘要:光遗传学通过光学和基因工程相结合对特定的基因表达和生物功能进行控制,具有精确的时空控制、无创和高效等优点。蛋白质被植入经基因改造的光感传感器后,在光刺激下调节构象的变化。因此,光遗传学技术可在从亚细胞和细胞水平到神经回路和行为模型等不同层面上为口腔生物学研究提供新的见解。本综述介绍了光遗传学的起源和光遗传学方法在口腔颌面研究中的最新进展,着重描述了通道视紫红质(ChR)、古紫质(Arch)和氯视紫红质(NpHR)等光遗传学工具在神经科学基础机制研究中的应用,以及在体内建立不同的口腔行为测试模型(口面部运动、舔舐、进食和饮水),同时回顾了光遗传学在三叉神经痛和颌面蜂窝织炎的临床前研究中的协同和拮抗作用。此外,在转化研究中,光遗传学工具被用于控制牙髓干细胞的神经源性分化。虽然光遗传学工具的应用范围在不断扩大,但其在口腔研究领域的大型动物实验和临床研究中的应用还很有限。光遗传学潜在的应用方向包括探索2019冠状病毒病(COVID-19)患者味觉丧失的治疗策略、研究口腔细菌生物膜、增强颅颌面和牙周组织再生,以及阐明干槽症、口干症和灼口综合征的可能发病机制。

关键词:激光;细胞分化;细菌毒力;神经系统;神经生理学;行为科学

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AlBassriTK,AlShaibiS,KhanF,et al.,2020.A rare case of cellulitis after tetanus toxoid (TT) vaccination.J Family Med Prim Care,9(3):1762-1764.

[2]AudouardE,MichelF,PierrozV,et al.,2022.Bioelectronic cell-based device provides a strategy for the treatment of the experimental model of multiple sclerosis.J Control Release,352:994-1008.

[3]BaliB,Gruber-DujardinE,KuschK,et al.,2022.Analyzing efficacy, stability, and safety of AAV-mediated optogenetic hearing restoration in mice.Life Sci Alliance,5(8):e202101338.

[4]BarJK,Lis-NawaraA,GrelewskiPG,2021.Dental pulp stem cell-derived secretome and its regenerative potential.Int J Mol Sci,22(21):12018.

[5]BenevidesES,SunshineMD,RanaS,et al.,2022.Optogenetic activation of the diaphragm.Sci Rep,12:6503.

[6]BergerAA,WinnickA,CarrollAH,et al.,2022.Rimegepant for the treatment of migraine.Health Psychol Res,10(5):38534.

[7]BerryA,HanK,TrouillonJ,et al.,2018.cAMP and Vfr control exolysin expression and cytotoxicity ofPseudomonas aeruginosa taxonomic outliers.J Bacteriol,200(12):e00135-18.

[8]BottoC,RucliM,TekinsoyMD,et al.,2022.Early and late stage gene therapy interventions for inherited retinal degenerations.Prog Retin Eye Res,86:100975.

[9]CaoY,PanSW,YanMY,et al.,2021.Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals.BMC Biol,19:252.

[10]ChangWP,PedroniA,HohendorfV,et al.,2020.Functionally distinct purkinje cell types show temporal precision in encoding locomotion.Proc Natl Acad Sci USA,117(29):17330-17337.

[11]ChenLQ,LvXJ,GuoQH,et al.,2023.Asymmetric activation of microglia in the hippocampus drives anxiodepressive consequences of trigeminal neuralgia in rodents.Br J Pharmacol,180(8):1090-1113.

[12]ChenZR,ZhangZY,ZhangW,et al.,2021.Direct and indirect pathway neurons in ventrolateral striatum differentially regulate licking movement and nigral responses.Cell Rep,37(3):109847.

[13]ChengXY,PuL,FuSW,et al.,2021.Engineering Gac/Rsm signaling cascade for optogenetic induction of the pathogenicity switch inPseudomonas aeruginosa.ACS Synth Biol,10(6):1520-1530.

[14]ChomettonS,GuèvremontG,SeigneurJ,et al.,2020.Projections from the nucleus accumbens shell to the ventral pallidum are involved in the control of sucrose intake in adult female rats.Brain Struct Funct,225(9):2815-2839.

[15]ChowdhuryS,YamanakaA,2021.Fiberless optogenetics. In: Yawo H, Kandori H, Koizumi A, et al. (Eds.), Optogenetics:Light-Sensing Proteins and Their Applications in Neuroscience and Beyond,2nd Ed.Springer,Singapore, p.407-416.

[16]CrawfordJ,LiuSF,TaoF,2021.A multidisciplinary approach to simultaneously monitoring real-time neuronal activity and pain behaviors during optogenetic stimulation of brain neurons in freely moving mice.J Pain Res,14:3503-3509.

[17]DergachevaO,Fleury-CuradoT,PolotskyVY,et al.,2020.GABA and glycine neurons from the ventral medullary region inhibit hypoglossal motoneurons.Sleep,43(6):zsz301.

[18]DomingosAI,VaynshteynJ,VossHU,et al.,2011.Leptin regulates the reward value of nutrient.Nat Neurosci,14(12):1562-1568.

[19]DowdyRAE,EmamHA,CorneliusBW,2019.Ludwig’s angina: anesthetic management.Anesth Prog,66(2):103-110.

[20]ElinaKC,OhBH,IslamJ,et al.,2021.Activation of CamKIIα expressing neurons on ventrolateral periaqueductal gray improves behavioral hypersensitivity and thalamic discharge in a trigeminal neuralgia rat model.J Headache Pain,22:47.

[21]EsmaeiliV,TamuraK,MuscinelliSP,et al.,2021.Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response.Neuron,109(13):2183-2201.

[22]FalknerAL,WeiDY,SongA,et al.,2020.Hierarchical representations of aggression in a hypothalamic-midbrain circuit.Neuron,106(4):637-648.e6.

[23]FennoL,YizharO,DeisserothK,2011.The development and application of optogenetics.Annu Rev Neurosci,34:389-412.

[24]GaffieldMA,SauerbreiBA,ChristieJM,2022.Cerebellum encodes and influences the initiation, performance, and termination of discontinuous movements in mice.eLife,11:e71464.

[25]GongR,XuSJ,HermundstadA,et al.,2020.Hindbrain double-negative feedback mediates palatability-guided food and water consumption.Cell,182(6):1589-1605.e22.

[26]GoyerD,RobertsMT,2020.Long-range channelrhodopsin-assisted circuit mapping of inferior colliculus neurons with blue and red-shifted channelrhodopsins.J Vis Exp, (156):e60760.

[27]HabibeyR,SharmaK,SwiersyA,et al.,2020.Optogenetics for neural transplant manipulation and functional analysis.Biochem Biophys Res Commun,527(2):343-349.

[28]HardtS,FischerC,VogelA,et al.,2019.Distal infraorbital nerve injury: a model for persistent facial pain in mice.PAIN,160(6):1431-1447.

[29]HarriottAM,ChungDY,UnerA,et al.,2021.Optogenetic spreading depression elicits trigeminal pain and anxiety behavior.Ann Neurol,89(1):99-110.

[30]HernandezJ,PerezL,SotoR,et al.,2021.Nociceptin/orphanin FQ neurons in the arcuate nucleus and ventral tegmental area act via nociceptin opioid peptide receptor signaling to inhibit proopiomelanocortin and A10 dopamine neurons and thereby modulate ingestion of palatable food.Physiol Behav,228:113183.

[31]IslamJ,KcE,OhBH,et al.,2020.Optogenetic stimulation of the motor cortex alleviates neuropathic pain in rats of infraorbital nerve injury with/without CGRP knock-down.J Headache Pain,21:106.

[32]IslamJ,KcE,KimS,et al.,2021.Stimulating GABAergic neurons in the nucleus accumbens core alters the trigeminal neuropathic pain responses in a rat model of infraorbital nerve injury.Int J Mol Sci,22(16):8421.

[33]JackmanSL,ChenCH,OffermannHL,et al.,2020.Cerebellar purkinje cell activity modulates aggressive behavior.eLife,9:e53229.

[34]KcE,IslamJ,KimS,et al.,2022.Pain relief in a trigeminal neuralgia modelvia optogenetic inhibition on trigeminal ganglion itself with flexible optic fiber cannula.Front Cell Neurosci,16:880369.

[35]KimCK,AdhikariA,DeisserothK,2017.Integration of optogenetics with complementary methodologies in systems neuroscience.Nat Rev Neurosci,18(4):222-235.

[36]KinsmanBJ,SimmondsSS,BrowningKN,et al.,2020.Integration of hypernatremia and angiotensin II by the organum vasculosum of the lamina terminalis regulates thirst.J Neurosci,40(10):2069-2079.

[37]LeeJ,SabatiniBL,2021.Striatal indirect pathway mediates exploration via collicular competition.Nature,599(7886):645-649.

[38]LeeS,AugustineV,ZhaoY,et al.,2019.Chemosensory modulation of neural circuits for sodium appetite.Nature,568(7750):93-97.

[39]LiXH,MatsuuraT,XueM,et al.,2021.Oxytocin in the anterior cingulate cortex attenuates neuropathic pain and emotional anxiety by inhibiting presynaptic long-term potentiation.Cell Rep,36(3):109411.

[40]LindnerF,DiepoldA,2022.Optogenetics in bacteria ‒ applications and opportunities. FEMS Microbiol Rev,46(2):fuab055.

[41]LiuMX,LiY,ZhongJ,et al.,2021.The effect of IL-6/Piezo2 on the trigeminal neuropathic pain.Aging,13(10):13615-13625.

[42]LiuRM,YangJ,YaoJ,et al.,2022.Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins.Nat Biotechnol,40(5):779-786.

[43]LiuSF,ShuH,CrawfordJ,et al.,2020.Optogenetic activation of dopamine receptor D1 and D2 neurons in anterior cingulate cortex differentially modulates trigeminal neuropathic pain.Mol Neurobiol,57(10):4060-4068.

[44]MaYP,HsuG,ZhangFG,2020.The applicability and efficacy of magnetic resonance-guided high intensity focused ultrasound system in the treatment of primary trigeminal neuralgia.Med Hypotheses,139:109688.

[45]MaimonBE,DiazM,RevolECM,et al.,2018.Optogenetic peripheral nerve immunogenicity.Sci Rep,8:14076.

[46]Matsuno-YagiA,MukohataY,1977.Two possible roles of bacteriorhodopsin; a comparative study of strains ofHalobacterium halobium differing in pigmentation.Biochem Biophys Res Commun,78(1):237-243.

[47]MayrhoferJM,El-BoustaniS,FoustoukosG,et al.,2019.Distinct contributions of whisker sensory cortex and tongue-jaw motor cortex in a goal-directed sensorimotor transformation.Neuron,103(6):1034-1043.e5.

[48]Mercer LindsayN,KnutsenPM,LozadaAF,et al.,2019.Orofacial movements involve parallel corticobulbar projections from motor cortex to trigeminal premotor nuclei.Neuron,104(4):765-780.e3.

[49]Mirzapour DelavarH,KaramzadehA,PahlavanneshanS,2016.Shining light on the sprout of life: optogenetics applications in stem cell research and therapy.J Membr Biol,249(3):215-220.

[50]MonakhovMV,MatlashovME,ColavitaM,et al.,2020.Screening and cellular characterization of genetically encoded voltage indicators based on near-infrared fluorescent proteins.ACS Chem Neurosci,11(21):3523-3531.

[51]Moreno MoralesN,PatelMT,StewartCJ,et al.,2021.Optogenetic tools for control of public goods inSaccharomyces cerevisiae.mSphere,6(4):e0058121.

[52]MorrealeFE,KleineS,LeodolterJ,et al.,2022.BacPROTACs mediate targeted protein degradation in bacteria.Cell,185(13):2338-2353.e18.

[53]MorrissetteAE,ChenPH,BhamaniC,et al.,2019.Unilateral optogenetic inhibition and excitation of basal ganglia output affect directional lick choices and movement initiation in mice.Neuroscience,423:55-65.

[54]NiyaziM,ZibaiiMI,ChavoshinezhadS,et al.,2020.Neurogenic differentiation of human dental pulp stem cells by optogenetics stimulation.J Chem Neuroanat,109:101821.

[55]NtziachristosV,2010.Going deeper than microscopy: the optical imaging frontier in biology.Nat Methods,7(8):603-614.

[56]OdaK,VierockJ,OishiS,et al.,2018.Crystal structure of the red light-activated channelrhodopsin Chrimson.Nat Commun,9:3949.

[57]OesterheltD,StoeckeniusW,1971.Rhodopsin-like protein from the purple membrane ofHalobacterium halobium.Nat New Biol,233(39):149-152.

[58]PérezALA,PivaLC,FulberJPC,et al.,2022.Optogenetic strategies for the control of gene expression in yeasts.Biotechnol Adv,54:107839.

[59]PisciottaA,BertaniG,BertoniL,et al.,2020.Modulation of cell death and promotion of chondrogenic differentiation by Fas/FasL in human dental pulp stem cells (hDPSCs).Front Cell Dev Biol,8:279.

[60]Prado-ProneG,Silva-BermudezP,Almaguer-FloresA,et al.,2018.Enhanced antibacterial nanocomposite mats by coaxial electrospinning of polycaprolactone fibers loaded with Zn-based nanoparticles.Nanomedicine,14(5):1695-1706.

[61]RaverC,UddinO,JiYD,et al.,2020.An amygdalo-parabrachial pathway regulates pain perception and chronic pain.J Neurosci,40(17):3424-3442.

[62]ReshetnikovVV,SmolskayaSV,FeoktistovaSG,et al.,2022.Optogenetic approaches in biotechnology and biomaterials.Trends Biotechnol,40(7):858-874.

[63]SahelJA,Boulanger-ScemamaE,PagotC,et al.,2021.Partial recovery of visual function in a blind patient after optogenetic therapy.Nat Med,27(7):1223-1229.

[64]ShengHY,LvSS,CaiYQ,et al.,2020.Activation of ventrolateral orbital cortex improves mouse neuropathic pain-induced anxiodepression.JCI Insight,5(19):e133625.

[65]ShirleyJL,de JongYP,TerhorstC,et al.,2020.Immune responses to viral gene therapy vectors.Mol Ther,28(3):709-722.

[66]Sofia BeasB,GuXL,LengY,et al.,2020.A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding.Nat Commun,11:6218.

[67]StrengML,Krook-MagnusonE,2021.The cerebellum and epilepsy.Epilepsy Behav,121:106909.

[68]SugaiT,NishieW,2020.Odontogenic facial cellulitis.BMJ Case Rep,13(12):e239381.

[69]Torruella-SuárezML,VandenbergJR,CoganES,et al.,2020.Manipulations of central amygdala neurotensin neurons alter the consumption of ethanol and sweet fluids in mice.J Neurosci,40(3):632-647.

[70]TremblayS,AckerL,AfrazA,et al.,2020.An open resource for non-human primate optogenetics.Neuron,108(6):1075-1090.e6.

[71]TsaiAC,HuangACW,YuYH,et al.,2020.A wireless magnetic resonance device for optogenetic applications in an animal model.Sensors (Basel),20(20):5869.

[72]VajtayTJ,BandiA,UpadhyayA,et al.,2019.Optogenetic and transcriptomic interrogation of enhanced muscle function in the paralyzed mouse whisker pad.J Neurophysiol,121(4):1491-1500.

[73]VeresJM,AndrasiT,Nagy-PalP,et al.,2023.CaMKIIα promoter-controlled circuit manipulations target both pyramidal cells and inhibitory interneurons in cortical networks.eNeuro, 10(4):ENEURO.0070-23.2023.

[74]WoodEH,KreymermanA,SunY,et al.,2018.Considerations for ophthalmic applications of optogenetics.Acta Ophthalmol,96(8):e1037.

[75]XiaAG,QianMJ,WangCC,et al.,2021.Optogenetic modification ofPseudomonas aeruginosa enables controllable twitching motility and host infection.ACS Synth Biol,10(3):531-541.

[76]YiMH,LiuYU,UmpierreAD,et al.,2021.Optogenetic activation of spinal microglia triggers chronic pain in mice.PLoS Biol,19(3):e3001154.

[77]YoshiiT,OkiC,WatahikiR,et al.,2021.Chemo-optogenetic protein translocation system using a photoactivatable self-localizing ligand.ACS Chem Biol,16(8):1557-1565.

[78]Zgierski-JohnstonCM,Schneider-WarmeF,2021.Observing and manipulating cell-specific cardiac function with light. In: Yawo H, Kandori H, Koizumi A, et al. (Eds.),Optogenetics:Light-Sensing Proteins and Their Applications in Neuroscience and Beyond, 2nd Ed. Springer, Singapore, p.377-388.

[79]ZhangY,CastroDC,HanY,et al.,2019.Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics.Proc Natl Acad Sci USA,116(43):21427-21437.

[80]ZhengD,FuJY,TangMY,et al.,2022.A deep mesencephalic nucleus circuit regulates licking behavior.Neurosci Bull,38(6):565-575.

[81]ZhouY,KongDQ,WangXY,et al.,2022.A small and highly sensitive red/far-red optogenetic switch for applications in mammals.Nat Biotechnol,40(2):262-272.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE