CLC number:
On-line Access: 2025-07-28
Received: 2024-01-24
Revision Accepted: 2024-07-09
Crosschecked: 2025-07-28
Cited: 0
Clicked: 1405
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-5371-4432
Qianhui LI, Hongye LU, Mengyuan ZHANG, Yuting YE, Qianming CHEN, Ping SUN. Epigenetic factors associated with peri-implantitis: a review[J]. Journal of Zhejiang University Science B, 2025, 26(7): 657-674.
@article{title="Epigenetic factors associated with peri-implantitis: a review",
author="Qianhui LI, Hongye LU, Mengyuan ZHANG, Yuting YE, Qianming CHEN, Ping SUN",
journal="Journal of Zhejiang University Science B",
volume="26",
number="7",
pages="657-674",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2400032"
}
%0 Journal Article
%T Epigenetic factors associated with peri-implantitis: a review
%A Qianhui LI
%A Hongye LU
%A Mengyuan ZHANG
%A Yuting YE
%A Qianming CHEN
%A Ping SUN
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 7
%P 657-674
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2400032
TY - JOUR
T1 - Epigenetic factors associated with peri-implantitis: a review
A1 - Qianhui LI
A1 - Hongye LU
A1 - Mengyuan ZHANG
A1 - Yuting YE
A1 - Qianming CHEN
A1 - Ping SUN
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 7
SP - 657
EP - 674
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2400032
Abstract: Peri-implant diseases are characterized by the resorption of hard tissue and the inflammation of soft tissue. epigenetics refers to alterations in the expression of genes that are not encoded in the DNA sequence, influencing diverse physiological activities, including immune response, inflammation, and bone metabolism. Epigenetic modifications can lead to tissue-specific gene expression variations among individuals and may initiate or exacerbate inflammation and disease predisposition. However, the impact of these factors on peri-implantitis remains inconclusive. To address this gap, we conducted a comprehensive review to investigate the associations between epigenetic mechanisms and peri-implantitis, specifically focusing on DNA methylation and microRNAs (miRNAs or miRs). We searched for relevant literature on PubMed, Web of Science, Scopus, and Google Scholar with keywords including “epigenetics,” “peri-implantitis,” “DNA methylation,” and “microRNA.” DNA methylation and miRNAs present a dynamic epigenetic mechanism operating around implants. Epigenetic modifications of genes related to inflammation and osteogenesis provide a new perspective for understanding how local and environmental factors influence the pathogenesis of peri-implantitis. In addition, we assessed the potential application of DNA methylation and miRNAs in the prevention, diagnosis, and treatment of peri-implantitis, aiming to provide a foundation for future studies to explore potential therapeutic targets and develop more effective management strategies for this condition. These findings also have broader implications for understanding the pathogenesis of other inflammation-related oral diseases like periodontitis.
[1]AlvesCH, RussiKL, RochaNC, et al., 2022. Host-microbiome interactions regarding peri-implantitis and dental implant loss. J Transl Med, 20:425.
[2]AmirhosseiniM, MadsenRV, EscottKJ, et al., 2018. GSK-3β inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation. J Cell Physiol, 233(3):2398-2408.
[3]AstolfiV, Ríos-CarrascoB, Gil-MurFJ, et al., 2022. Incidence of peri-implantitis and relationship with different conditions: a retrospective study. Int J Environ Res Public Health, 19(7):4147.
[4]BerglundhT, ArmitageG, AraujoMG, et al., 2018. Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol, 45(S20):S286-S291.
[5]BerglundhT, MombelliA, SchwarzF, et al., 2024. Etiology, pathogenesis and treatment of peri-implantitis: a European perspective. Periodontol 2000, in press.
[6]BommaritoPA, FryRC, 2019. The role of DNA methylation in gene regulation. In: McCullough SD, Dolinoy DC (Eds.), Toxicoepigenetics. Academic Press, London, p.127-151.
[7]CavalliG, HeardE, 2019. Advances in epigenetics link genetics to the environment and disease. Nature, 571(7766):489-499.
[8]ChaparroA, AtriaP, RealiniO, et al., 2021. Diagnostic potential of peri-implant crevicular fluid microRNA-21-3p and microRNA-150-5p and extracellular vesicles in peri-implant diseases. J Periodontol, 92(6):e11-e21.
[9]ChenRS, LiaoX, ChenFR, et al., 2018. Circulating microRNAs, miR-10b-5p, miR-328-3p, miR-100 and let-7, are associated with osteoblast differentiation in osteoporosis. Int J Clin Exp Pathol, 11(3):1383-1390.
[10]ChengL, FanYL, ChengJ, et al., 2022. Long non-coding RNA ZFY-AS1 represses periodontitis tissue inflammation and oxidative damage via modulating microRNA-129-5p/DEAD-Box helicase 3 X-linked axis. Bioengineered, 13(5):12691-12705.
[11]ChoYD, KimPJ, KimHG, et al., 2020. Transcriptome and methylome analysis of periodontitis and peri-implantitis with tobacco use. Gene, 727:144258.
[12]ChoYD, KimWJ, KimS, et al., 2021. Surface topography of titanium affects their osteogenic potential through DNA methylation. Int J Mol Sci, 22(5):2406.
[13]ChoiSW, BraunT, HenigI, et al., 2017. Vorinostat plus tacrolimus/methotrexate to prevent GVHD after myeloablative conditioning, unrelated donor HCT. Blood, 130(15):1760-1767.
[14]ChoudhuriS, 2011. From Waddington’s epigenetic landscape to small noncoding RNA: some important milestones in the history of epigenetics research. Toxicol Mech Methods, 21(4):252-274.
[15]DaubertDM, PozhitkovAE, SafiotiLM, et al., 2019. Association of global DNA methylation to titanium and peri-implantitis: a case-control study. JDR Clin Trans Res, 4(3):284-291.
[16]de la RicaL, García-GómezA, CometNR, et al., 2015. NF-κB-direct activation of microRNAs with repressive effects on monocyte-specific genes is critical for osteoclast differentiation. Genome Biol, 16:2.
[17]DerksJ, IchiokaY, DionigiC, et al., 2023. Prevention and management of peri-implant mucositis and peri-implantitis: a systematic review of outcome measures used in clinical studies in the last 10 years. J Clin Periodontol, 50(S25):55-66.
[18]DumitrescuRG, 2018. Early epigenetic markers for precision medicine. In: Dumitrescu RG, Verma M (Eds.), Cancer Epigenetics for Precision Medicine. Humana Press, New York, p.3-17.
[19]FarsettiA, IlliB, GaetanoC, 2023. How epigenetics impacts on human diseases. Eur J Intern Med, 114:15-22.
[20]GanesanSM, DabdoubSM, NagarajaHN, et al., 2022. Biome-microbiome interactions in peri-implantitis: a pilot investigation. J Periodontol, 93(6):814-823.
[21]GaoCS, RenCM, LiuZX, et al., 2019. GAS5, a FoxO1-actived long noncoding RNA, promotes propofol-induced oral squamous cell carcinoma apoptosis by regulating the miR-1297-GSK3β axis. Artif Cells Nanomed Biotechnol, 47(1):3985-3993.
[22]GengZ, WangXG, ZhaoJ, et al., 2018. The synergistic effect of strontium-substituted hydroxyapatite and microRNA-21 on improving bone remodeling and osseointegration. Biomater Sci, 6(10):2694-2703.
[23]GengZ, YuYM, LiZY, et al., 2020. miR-21 promotes osseointegration and mineralization through enhancing both osteogenic and osteoclastic expression. Mater Sci Eng C Mater Biol Appl, 111:110785.
[24]GuanHB, FanDP, MrelashviliD, et al., 2013. MicroRNA let-7e is associated with the pathogenesis of experimental autoimmune encephalomyelitis. Eur J Immunol, 43(1):104-114.
[25]GuglielmottiMB, OlmedoDG, CabriniRL, 2019. Research on implants and osseointegration. Periodontol 2000, 79(1):178-189.
[26]HiersNM, LiTQ, TraugotCM, et al., 2024. Target-directed microRNA degradation: mechanisms, significance, and functional implications. WIREs RNA, 15(2):e1832.
[27]HoPTB, ClarkIM, LeLTT, 2022. MicroRNA-based diagnosis and therapy. Int J Mol Sci, 23(13):7167.
[28]HodgesAJ, HudsonNO, Buck-KoehntopBA, 2020. Cys2His2 zinc finger methyl-CpG binding proteins: getting a handle on methylated DNA. J Mol Biol, 432(6):1640-1660.
[29]HoggSJ, BeavisPA, DawsonMA, et al., 2020. Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov, 19(11):776-800.
[30]HollidayR, PughJE, 1975. DNA modification mechanisms and gene activity during development. Science, 187(4173):226-232.
[31]IsolaG, TartagliaGM, SantonocitoS, et al., 2023. Impact of N-terminal pro-B-type natriuretic peptide and related inflammatory biomarkers on periodontal treatment outcomes in patients with periodontitis: an explorative human randomized-controlled clinical trial. J Periodontol, 94(12):1414-1424.
[32]JiangSY, XueD, XieYF, et al., 2015. The negative feedback regulation of microRNA-146a in human periodontal ligament cells after Porphyromonas gingivalis lipopolysaccharide stimulation. Inflamm Res, 64(6):441-451.
[33]JiangSY, HuY, DengS, et al., 2018. miR-146a regulates inflammatory cytokine production in Porphyromonas gingivalis lipopolysaccharide-stimulated B cells by targeting IRAK1 but not TRAF6. Biochim Biophys Acta Mol Basis Dis, 1864(3):925-933.
[34]JinYC, HongFL, BaoQY, et al., 2020. MicroRNA-145 suppresses osteogenic differentiation of human jaw bone marrow mesenchymal stem cells partially via targeting semaphorin 3A. Connect Tissue Res, 61(6):577-585.
[35]JurdzińskiKT, PotempaJ, GrabiecAM, 2020. Epigenetic regulation of inflammation in periodontitis: cellular mechanisms and therapeutic potential. Clin Epigenet, 12:186.
[36]KadkhodazadehM, JafariAR, AmidR, et al., 2013. MiR146a and MiR499 gene polymorphisms in Iranian periodontitis and peri-implantitis patients. J Long-Term Eff Med Implants, 23(1):9-16.
[37]KaurP, KotruS, SinghS, et al., 2022. Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol, 59(3):1836-1849.
[38]KhalidM, PetroianuG, AdemA, 2022. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules, 12(4):542.
[39]KhoulyI, Pardiñas LópezS, Díaz PradoSM, et al., 2022. Global DNA methylation in dental implant failure due to peri-implantitis: an exploratory clinical pilot study. Int J Environ Res Public Health, 19(2):1020.
[40]LarssonL, 2017. Current concepts of epigenetics and its role in periodontitis. Curr Oral Health Rep, 4(4):286-293.
[41]LiY, ZhengJN, GongCJ, et al., 2020. Development of an immunogenomic landscape for the competing endogenous RNAs network of peri-implantitis. BMC Med Genet, 21:208.
[42]LiYF, DuZB, XieXT, et al., 2021. Epigenetic changes caused by diabetes and their potential role in the development of periodontitis. J Diabetes Investig, 12(8):1326-1335.
[43]LiYM, ChenGH, HeY, et al., 2021. Selenomethionine-modified polyethylenimine-based nanoparticles loaded with miR-132-3p inhibitor-biofunctionalized titanium implants for improved osteointegration. ACS Biomater Sci Eng, 7(10):4933-4945.
[44]LiuHM, LiuP, 2021. Kartogenin promotes the BMSCs chondrogenic differentiation in osteoarthritis by down-regulation of miR-145-5p targeting Smad4 pathway. Tissue Eng Regen Med, 18(6):989-1000.
[45]LiuXM, SuK, KuangSJ, et al., 2020. miR-16-5p and miR-145-5p trigger apoptosis in human gingival epithelial cells by down-regulating BACH2. Int J Clin Exp Pathol, 13(5):901-911.
[46]LiuY, WangXX, YangDP, et al., 2014. MicroRNA-21 affects proliferation and apoptosis by regulating expression of PTEN in human keloid fibroblasts. Plast Reconstr Surg, 134(4):561e-573e.
[47]LuanX, ZhouX, Trombetta-EsilvaJ, et al., 2017. MicroRNAs and periodontal homeostasis. J Dent Res, 96(5):491-500.
[48]MatareseG, IsolalG, AnastaspGP, et al., 2013. Transforming growth factor beta 1 and vascular endothelial growth factor levels in the pathogenesis of periodontal disease. Eur J Inflamm, 11(2):479-488.
[49]MazziottaC, BadialeG, CervelleraCF, et al., 2024. Regulatory mechanisms of circular RNAs during human mesenchymal stem cell osteogenic differentiation. Theranostics, 14(1):143-158.
[50]MengYB, LiX, LiZY, et al., 2016. Surface functionalization of titanium alloy with miR-29b nanocapsules to enhance bone regeneration. ACS Appl Mater Interfaces, 8(9):5783-5793.
[51]MeniniM, DellepianeE, BaldiD, et al., 2017. Microarray expression in peri-implant tissue next to different titanium implant surfaces predicts clinical outcomes: a split-mouth study. Clin Oral Implants Res, 28(9):e121-e134.
[52]MeniniM, PesceP, BaldiD, et al., 2019. Prediction of titanium implant success by analysis of microRNA expression in peri-implant tissue. A 5-year follow-up study. J Clin Med, 8(6):888.
[53]MeniniM, PesceP, PeraF, et al., 2021. MicroRNAs in peri-implant crevicular fluid can predict peri-implant bone resorption: clinical trial with a 5-year follow-up. Int J Oral Maxillofac Implants, 36(6):1148-1157.
[54]MeteranH, KnudsenAØ, JørgensenTL, et al., 2024. Carboplatin plus paclitaxel in combination with the histone deacetylate inhibitor, vorinostat, in patients with recurrent platinum-sensitive ovarian cancer. J Clin Med, 13(3):897.
[55]MichouL, 2018. Epigenetics of bone diseases. Joint Bone Spine, 85(6):701-707.
[56]MijiritskyE, FerroniL, GardinC, et al., 2019. Presence of ROS in inflammatory environment of peri-implantitis tissue: in vitro and in vivo human evidence. J Clin Med, 9(1):38.
[57]Millán-ZambranoG, BurtonA, BannisterAJ, et al., 2022. Histone post-translational modifications‒cause and consequence of genome function. Nat Rev Genet, 23(9):563-580.
[58]MohrAM, MottJL, 2015. Overview of microRNA biology. Semin Liver Dis, 35(1):3-11.
[59]NibaliL, GkraniasN, MainasG, et al., 2022. Periodontitis and implant complications in diabetes. Periodontol 2000, 90(1):88-105.
[60]OhJM, KimY, SonH, et al., 2024. Comparative transcriptome analysis of periodontitis and peri-implantitis in human subjects. J Periodontol, 95(4):337-349.
[61]Oton-GonzalezL, MazziottaC, IaquintaMR, et al., 2022. Genetics and epigenetics of bone remodeling and metabolic bone diseases. Int J Mol Sci, 23(3):1500.
[62]PanKQ, HuY, WangYF, et al., 2020. RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling. Int J Implant Dent, 6:15.
[63]SchwarzF, DerksJ, MonjeA, et al., 2018. Peri-implantitis. J Clin Periodontol, 45(S20):S246-S266.
[64]SczepanikFSC, GrossiML, CasatiM, et al., 2020. Periodontitis is an inflammatory disease of oxidative stress: we should treat it that way. Periodontol 2000, 84(1):45-68.
[65]SelbachM, SchwanhäusserB, ThierfelderN, et al., 2008. Widespread changes in protein synthesis induced by microRNAs. Nature, 455(7209):58-63.
[66]ShangRF, LeeS, SenavirathneG, et al., 2023. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet, 24(12):816-833.
[67]ShaoD, WangCF, SunYP, et al., 2018. Effects of oral implants with miR-122-modified cell sheets on rat bone marrow mesenchymal stem cells. Mol Med Rep, 17(1):1537-1544.
[68]ShenGY, RenH, ShangQ, et al., 2020. miR-128 plays a critical role in murine osteoclastogenesis and estrogen deficiency-induced bone loss. Theranostics, 10(10):4334-4348.
[69]StraussFJ, StähliA, KobatakeR, et al., 2020. miRNA-21 deficiency impairs alveolar socket healing in mice. J Periodontol, 91(12):1664-1672.
[70]SubramaniamR, VijakumaranU, ShanmugananthaL, et al., 2023. The role and mechanism of microRNA 21 in osteogenesis: an update. Int J Mol Sci, 24(14):11330.
[71]SunL, GirnaryM, WangLF, et al., 2020. IL-10 dampens an IL-17-mediated periodontitis-associated inflammatory network. J Immunol, 204(8):2177-2191.
[72]TanakaU, KajiokaS, FinotiLS, et al., 2021. Decitabine inhibits bone resorption in periodontitis by upregulating anti-inflammatory cytokines and suppressing osteoclastogenesis. Biomedicines, 9(2):199.
[73]UrvasizogluG, KilicA, BarlakN, et al., 2021. MiR-4484 acts as a potential saliva biomarker for early detection of peri-implantitis. Int J Oral Maxillofac Implants, 36(1):115-121.
[74]UrvasizogluG, KilicA, CapikO, et al., 2024. CXCL14 and miR-4484 serves as potential salivary biomarkers for early detection of peri-implantitis. Odontology, 112(3):864-871.
[75]VojinovicJ, DamjanovN, D'UrzoC, et al., 2011. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum, 63(5):1452-1458.
[76]WachiT, ShutoT, ShinoharaY, et al., 2015. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology, 327:1-9.
[77]WaddingtonCH, 2012. The epigenotype. Int J Epidemiol, 41(1):10-13.
[78]WangQ, WangXY, ValverdeP, et al., 2021. Osteogenic effects of microRNA-335-5p/lipidoid nanoparticles coated on titanium surface. Arch Oral Biol, 129:105207.
[79]WangQN, YanYZ, ZhangXZ, et al., 2022. Rescuing effects of periostin in advanced glycation end-products (AGEs) caused osteogenic and oxidative damage through AGE receptor mediation and DNA methylation of the CALCA promoter. Chem Biol Interact, 354:109835.
[80]WangSM, WuWY, 2018. DNA methylation alterations in human cancers. In: Tollefsbol TO (Ed.), Epigenetics in Human Disease, 2nd Ed. Academic Press, SanDiego, p.109-139.
[81]WangYF, LiuHM, WuJM, et al., 2020. 5-Aza-2-deoxycytidine inhibits osteolysis induced by titanium particles by regulating RANKL/OPG ratio. Biochem Biophys Res Commun, 529(3):629-634.
[82]WangZL, WuXF, HouXW, et al., 2020. miR-548b-3p functions as a tumor suppressor in lung cancer. Lasers Med Sci, 35(4):833-839.
[83]WangZS, WuGS, FengZH, et al., 2015. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells. Int J Nanomedicine, 10:6675-6687.
[84]WangZS, WuGS, YangZJ, et al., 2022. Chitosan/hyaluronic acid/microRNA-21 nanoparticle-coated smooth titanium surfaces promote the functionality of human gingival fibroblasts. Int J Nanomedicine, 17:3793-3807.
[85]WuXL, ChenXP, MiWX, et al., 2017. MicroRNA sequence analysis identifies microRNAs associated with peri-implantitis in dogs. Biosci Rep, 37(5):BSR20170768.
[86]WuXL, GuQH, ChenXP, et al., 2019. MiR-27a targets DKK2 and SFRP1 to promote reosseointegration in the regenerative treatment of peri-implantitis. J Bone Miner Res, 34(1):123-134.
[87]XieN, CuiHC, BanerjeeS, et al., 2014. miR-27a regulates inflammatory response of macrophages by targeting IL-10. J Immunol, 193(1):327-334.
[88]XuC, WangZD, LiuYJ, et al., 2023. Extracellular vesicles derived from bone marrow mesenchymal stem cells loaded on magnetic nanoparticles delay the progression of diabetic osteoporosis via delivery of miR-150-5p. Cell Biol Toxicol, 39(4):1257-1274.
[89]YadalamPK, ThiyagarajA, 2020. An immune interaction network driven approach for identifying biomarkers for peri‐implantitis. Clin Oral Implants Res, 31(S20):70.
[90]YanJ, ChangB, HuXX, et al., 2018. Titanium implant functionalized with antimiR-138 delivered cell sheet for enhanced peri-implant bone formation and vascularization. Mater Sci Eng C Mater Biol Appl, 89:52-64.
[91]ZhangHM, YuanY, XueHX, et al., 2022. MicroRNA sequence and function analysis in peri-implantitis and periodontitis: an animal study. J Periodontal Res, 57(5):1043-1055.
[92]ZhangHM, YuanY, XueHX, et al., 2023. Reprogramming mitochondrial metabolism of macrophages by miRNA-released microporous coatings to prevent peri-implantitis. J Nanobiotechnol, 21:485.
[93]ZhouHL, ChenDH, XieGF, et al., 2020. LncRNA-mediated ceRNA network was identified as a crucial determinant of differential effects in periodontitis and periimplantitis by high-throughput sequencing. Clin Implant Dent Relat Res, 22(3):424-450.
[94]ZhouW, SuL, DuanXY, et al., 2018. MicroRNA-21 down-regulates inflammation and inhibits periodontitis. Mol Immunol, 101:608-614.
Open peer comments: Debate/Discuss/Question/Opinion
<1>