Full Text:   <2637>

Summary:  <13>

CLC number: 

On-line Access: 2026-02-06

Received: 2024-05-20

Revision Accepted: 2024-10-07

Crosschecked: 2026-02-06

Cited: 0

Clicked: 1875

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Muhammad TUFAIL

https://orcid.org/0000-0003-3442-7216

Ning LI

https://orcid.org/0000-0003-3726-0773

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2026 Vol.27 No.2 P.105-128

http://doi.org/10.1631/jzus.B2400251


Roles of Wnt ligands and receptors in oral squamous cell carcinoma


Author(s):  Muhammad TUFAIL, Caiyun HE, Canhua JIANG, Ning LI

Affiliation(s):  Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha 410008, China; more

Corresponding email(s):   liningoms@csu.edu.cn

Key Words:  Oral squamous cell carcinoma (OSCC), Wingless/Int-1 (Wnt) signaling, Molecular mechanism, Tumorigenesis, Therapeutic target


Share this article to: More |Next Article >>>

Muhammad TUFAIL, Caiyun HE, Canhua JIANG, Ning LI. Roles of Wnt ligands and receptors in oral squamous cell carcinoma[J]. Journal of Zhejiang University Science B, 2026, 27(2): 105-128.

@article{title="Roles of Wnt ligands and receptors in oral squamous cell carcinoma",
author="Muhammad TUFAIL, Caiyun HE, Canhua JIANG, Ning LI",
journal="Journal of Zhejiang University Science B",
volume="27",
number="2",
pages="105-128",
year="2026",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2400251"
}

%0 Journal Article
%T Roles of Wnt ligands and receptors in oral squamous cell carcinoma
%A Muhammad TUFAIL
%A Caiyun HE
%A Canhua JIANG
%A Ning LI
%J Journal of Zhejiang University SCIENCE B
%V 27
%N 2
%P 105-128
%@ 1673-1581
%D 2026
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2400251

TY - JOUR
T1 - Roles of Wnt ligands and receptors in oral squamous cell carcinoma
A1 - Muhammad TUFAIL
A1 - Caiyun HE
A1 - Canhua JIANG
A1 - Ning LI
J0 - Journal of Zhejiang University Science B
VL - 27
IS - 2
SP - 105
EP - 128
%@ 1673-1581
Y1 - 2026
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2400251


Abstract: 
oral squamous cell carcinoma (OSCC) poses significant challenges in terms of diagnosis and treatment, with high rates of morbidity and mortality. Emerging evidence highlights the critical involvement of Wingless/Int-1 (Wnt) ligands and receptors in OSCC pathogenesis. Dysregulated Wnt signaling pathways contribute to tumor initiation, progression, and therapy resistance by promoting cellular proliferation, epithelial‒mesenchymal transition (EMT), and the maintenance of cancer stem cells (CSCs). Targeting Wnt signaling presents a promising therapeutic avenue, yet its complex interplay with other signaling pathways requires a deeper understanding to implement effective intervention. This study sheds light on the current knowledge of the roles of Wnt ligands and receptors in OSCC, emphasizing their potential as diagnostic biomarkers and therapeutic targets. Future research directions involve elucidating context-specific Wnt signaling dynamics and exploring combination therapies to improve clinical outcomes for OSCC patients.

Wnt配体和受体在口腔鳞状细胞癌中的作用

穆罕默德·图法尔1, 何彩云1, 蒋灿华1,2,3,4, 李宁1,2,3,4
1中南大学湘雅医院口腔颌面外科, 口腔医学中心, 中国长沙市, 410008
2中南大学口腔癌前病变研究所, 中国长沙市, 410008
3中南大学湘雅医院口腔与颌面肿瘤研究中心, 中国长沙市, 410008
4中南大学湘雅医院老年病国家临床研究中心, 中国长沙市, 410008
摘要:口腔鳞状细胞癌(OSCC)具有较高发病率和死亡率,在临床诊断和治疗中面临重大挑战。最新研究证实Wnt配体及其受体在OSCC发病中具有关键作用。Wnt信号通路失调可通过促进细胞增殖和上皮-间质转化(EMT),以及维持癌症干细胞(CSC)干性,来驱动肿瘤的发生与发展,并导致其产生治疗抵抗。尽管靶向Wnt信号通路展现出潜在的治疗前景,但要实现有效干预,仍需对Wnt与其他信号通路的复杂相互作用展开进一步研究。本文对Wnt配体和受体在OSCC中作用的最新研究进行综述,强调其作为诊断生物标志物和治疗靶点的潜力。未来的研究方向包括阐明Wnt信号通路在特定背景下的动态变化,并探索联合疗法以提高OSCC患者的临床治疗效果。

关键词:口腔鳞状细胞癌(OSCC);Wnt信号通路;分子机制;肿瘤发生;治疗靶点

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AiYL, WuSY, ZouC, et al., 2020. LINC00941 promotes oral squamous cell carcinoma progression via activating CAPRIN2 and canonical WNT/β-catenin signaling pathway. J Cell Mol Med, 24(18):10512-10524.

[2]ArebroJ, TowleR, LeeCM, et al., 2023. Extracellular vesicles promote activation of pro-inflammatory cancer-associated fibroblasts in oral cancer. Front Cell Dev Biol, 11:1240159.

[3]BaiYP, ShaJJ, KannoT, 2020. The role of carcinogenesis-related biomarkers in the Wnt pathway and their effects on epithelial‒mesenchymal transition (EMT) in oral squamous cell carcinoma. Cancers, 12(3):555.

[4]BaisMV, KukuruzinskaM, TrackmanPC, 2015. Orthotopic non-metastatic and metastatic oral cancer mouse models. Oral Oncol, 51(5):476-482.

[5]BuenoMLP, SaadSTO, RoversiFM, 2022. WNT5A in tumor development and progression: a comprehensive review. Biomed Pharmacother, 155:113599.

[6]CadenaIA, BuchananMR, HarrisCG, et al., 2023. Engineering high throughput screening platforms of cervical cancer. J Biomed Mater Res, 111(6):747-764.

[7]CadiganKM, WatermanML, 2012. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol, 4(11):a007906.

[8]ChandlerKB, AlamoudKA, StahlVL, et al., 2020. β-Catenin/CBP inhibition alters epidermal growth factor receptor fucosylation status in oral squamous cell carcinoma. Mol Omics, 16(3):195-209.

[9]ChavesP, GarridoM, OliverJ, et al., 2023. Preclinical models in head and neck squamous cell carcinoma. Br J Cancer, 128(10):1819-1827.

[10]ChenC, LuoLN, XuCL, et al., 2022. Tumor specificity of WNT ligands and receptors reveals universal squamous cell carcinoma oncogenes. BMC Cancer, 22:790.

[11]CierpikowskiP, Lis-NawaraA, BarJ, 2023. Prognostic value of WNT1, NOTCH1, PDGFRβ, and CXCR4 in oral squamous cell carcinoma. Anticancer Res, 43(2):591-602.

[12]Dalir AbdolahiniaE, HanXZ, 2023. The three-dimensional in vitro cell culture models in the study of oral cancer immune microenvironment. Cancers, 15(17):4266.

[13]DongY, ZhaoQ, MaXY, et al., 2015. Establishment of a new OSCC cell line derived from OLK and identification of malignant transformation-related proteins by differential proteomics approach. Sci Rep, 5:12668.

[14]FarrapoMT, RifaneTO, PintoDN, et al., 2022. Canonical WNT signaling pathway in oral squamous cell carcinoma prognosis. Res Soc Dev, 11(2):e8411225462.

[15]FarshbafA, LotfiM, ZareR, et al., 2023. The organoid as reliable cancer modeling in personalized medicine, does applicable in precision medicine of head and neck squamous cell carcinoma? Pharmacogenomics J, 23(2-3):37-44.

[16]Fleming-de-MoraesCD, RochaMR, TessmannJW, et al., 2022. Crosstalk between PI3K/Akt and Wnt/β-catenin pathways promote colorectal cancer progression regardless of mutational status. Cancer Biol Ther, 23(1):1-13.

[17]GeC, HuangXT, ZhangSJ, et al., 2023. In vitro co-culture systems of hepatic and intestinal cells for cellular pharmacokinetic and pharmacodynamic studies of capecitabine against colorectal cancer. Cancer Cell Int, 23:14.

[18]GrimaldiM, BoulahtoufA, PrévostelC, et al., 2018. A cell model suitable for a high-throughput screening of inhibitors of the Wnt/β-catenin pathway. Front Pharmacol, 9:1160.

[19]HeK, GanWJ, 2023. Wnt/β-catenin signaling pathway in the development and progression of colorectal cancer. Cancer Manag Res, 15:435-448.

[20]HouZY, WuCZ, TangJR, et al., 2024. CLSPN actives Wnt/β-catenin signaling to facilitate glycolysis and cell proliferation in oral squamous cell carcinoma. Exp Cell Res, 435(2):113935.

[21]HsuTN, HuangCM, HuangCS, et al., 2019. Targeting FAT1 inhibits carcinogenesis, induces oxidative stress and enhances cisplatin sensitivity through deregulation of LRP5/WNT2/GSS signaling axis in oral squamous cell carcinoma. Cancers, 11(12):1883.

[22]HsuehPC, ChangKP, LiuHP, et al., 2022. Development of a salivary autoantibody biomarker panel for diagnosis of oral cavity squamous cell carcinoma. Front Oncol, 12:968570.

[23]InvreaF, RovitoR, TorchiaroE, et al., 2020. Patient-derived xenografts (PDXs) as model systems for human cancer. Curr Opin Biotechnol, 63:151-156.

[24]JiaB, QiuXL, ChuHX, et al., 2019. Wnt7a predicts poor prognosis, and contributes to growth and metastasis in tongue squamous cell carcinoma. Oncol Rep, 41(3):1749-1758.

[25]JoinerDM, KeJY, ZhongZD, et al., 2013. LRP5 and LRP6 in development and disease. Trends Endocrinol Metab, 24(1):31-39.

[26]JungEK, KimSA, YoonTM, et al., 2017. WNT1-inducible signaling pathway protein-1 contributes to tumor progression and treatment failure in oral squamous cell carcinoma. Oncol Lett, 14(2):1719-1724.

[27]KalinkeLP, AlvaresLE, SchusselJL, et al., 2016. Expression of WNT10A gene in oral squamous cell carcinoma. West Indian Med J, 65(3):480-485.

[28]KarthaVK, AlamoudKA, SadykovK, et al., 2018. Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer. Genome Med, 10:54.

[29]KayamoriK, KatsubeKI, HiraiH, et al., 2023. Role of stromal fibroblast-induced WNT7A associated with cancer cell migration through the AKT/CLDN1 signaling axis in oral squamous cell carcinoma. Lab Invest, 103(10):100228.

[30]KimO, AhnK, KimHE, et al., 2019. Screening of β-catenin inhibitor from medicinal plant extracts for intractable recurrent oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol, 128(1):e43.

[31]KrisanaprakornkitS, IamaroonA, 2012. Epithelial-mesenchymal transition in oral squamous cell carcinoma. Int Scholarly Res Not, 2012:681469.

[32]KumarV, VashishtaM, KongL, et al., 2021. The role of notch, hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies. Front Cell Dev Biol, 9:650772.

[33]LauHK, WuER, ChenMK, et al., 2017. Effect of genetic variation in microRNA binding site in WNT1-inducible signaling pathway protein 1 gene on oral squamous cell carcinoma susceptibility. PLoS ONE, 12(4):e0176246.

[34]LeeG, KimYB, KimJH, et al., 2002. Characterization of novel cell lines established from three human oral squamous cell carcinomas. Int J Oncol, 20(6):1151-1159.

[35]LeeSY, KooIS, HwangHJ, et al., 2023. In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discov, 28(4):119-137.

[36]LiQ, DongH, YangGW, et al., 2020. Mouse tumor-bearing models as preclinical study platforms for oral squamous cell carcinoma. Front Oncol, 10:212.

[37]LiuBY, ChenW, CaoG, et al., 2017. MicroRNA-27b inhibits cell proliferation in oral squamous cell carcinoma by targeting FZD7 and Wnt signaling pathway. Arch Oral Biol, 83:92-96.

[38]LiuBY, CaoG, DongZ, et al., 2019. Effect of microRNA-27b on cisplatin chemotherapy sensitivity of oral squamous cell carcinoma via FZD7 signaling pathway. Oncol Lett, 18(1):667-673.

[39]LiuJ, PanSF, HsiehMH, et al., 2013. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA, 110(50):20224-20229.

[40]LiuLJ, JiangH, ZhaoJ, et al., 2018. MiRNA-16 inhibited oral squamous carcinoma tumor growth in vitro and in vivo via suppressing Wnt/β-catenin signaling pathway. Onco Targets Ther, 11:5111-5119.

[41]LiuYH, WuWT, CaiCJ, et al., 2023. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther, 8:160.

[42]MaJT, RenYP, ZhangL, et al., 2017. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression. PLoS ONE, 12(4):e0174309.

[43]MehterovN, VladimirovB, SacconiA, et al., 2021. Salivary miR-30c-5p as potential biomarker for detection of oral squamous cell carcinoma. Biomedicines, 9(9):1079.

[44]MengX, LouQY, YangWY, et al., 2021. The role of non-coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic potential. Cancer Commun (Lond), 41(10):981-1006.

[45]MenonR, LiCC, LiMZ, 2017. Wnt signaling in oral cancer initiating cells. Oral Surg Oral Med Oral Pathol Oral Radiol, 124(3):e202.

[46]MillenR, de KortWWB, KoomenM, et al., 2023. Patient-derived head and neck cancer organoids allow treatment stratification and serve as a tool for biomarker validation and identification. Med, 4(5):290-310.e12.

[47]MinAJ, ZhuC, PengSP, et al., 2016. Downregulation of microRNA-148a in cancer-associated fibroblasts from oral cancer promotes cancer cell migration and invasion by targeting Wnt10b. J Biochem Mol Toxicol, 30(4):186-191.

[48]NgernsombatC, PrattapongP, LarbcharoensubN, et al., 2021. WNT8B as an independent prognostic marker for nasopharyngeal carcinoma. Curr Oncol, 28(4):2529-2539.

[49]NguyenNT, DoanVN, TranHLB, 2023. Role of co-culture with fibroblasts and dynamic culture systems in 3-dimensional MCF-7 tumor model maturation. Trends Sci, 20(2):3892-3892.

[50]NieXB, LiuHY, LiuL, et al., 2020. Emerging roles of Wnt ligands in human colorectal cancer. Front Oncol, 10:1341.

[51]NogutiJ, de MouraCFG, HossakaTA, et al., 2012. The role of canonical WNT signaling pathway in oral carcinogenesis: a comprehensive review. Anticancer Res, 32(3):873-878.

[52]PaluszczakJ, 2020. The significance of the dysregulation of canonical Wnt signaling in head and neck squamous cell carcinomas. Cells, 9(3):723.

[53]PatelS, AlamA, PantR, et al., 2019. Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights. Front Immunol, 10:2872.

[54]PatilDJ, NagarajuR, 2021. Personalised precision medicine - a novel approach for oral cancer management. In: Sridharan G (Ed.), Oral Cancer—Current Concepts and Future Perspectives. IntechOpen, Rijeka.

[55]PekarekL, Garrido-GilMJ, Sánchez-CendraA, et al., 2023. Emerging histological and serological biomarkers in oral squamous cell carcinoma: applications in diagnosis, prognosis evaluation and personalized therapeutics (Review). Oncol Rep, 50(6):213.

[56]Peña-OyarzúnD, FloresT, TorresVA, et al., 2024. Inhibition of PORCN blocks Wnt signaling to attenuate progression of oral carcinogenesis. Clin Cancer Res, 30(1):209-223.

[57]PrgometZ, LindbergP, AnderssonT, 2013. PP064: Wnt5a stimulates migration and invasion in OSCC. Oral Oncol, 49(suppl 1):S115-S116.

[58]PrgometZ, AnderssonT, LindbergP, 2017. Higher expression of WNT5A protein in oral squamous cell carcinoma compared with dysplasia and oral mucosa with a normal appearance. Eur J Oral Sci, 125(4):237-246.

[59]ProssomaritiA, PiazziG, AlquatiC, et al., 2020. Are Wnt/β-catenin and PI3K/AKT/mTORC1 distinct pathways in colorectal cancer? Cell Mol Gastroenterol Hepatol, 10(3):491-506.

[60]PurwaningsihNMS, KhorGH, Nik Mohd RosdyNMM, et al., 2021. Wnt pathway in oral cancer: a review update. Saudi Dent J, 33(8):813-818.

[61]RenQ, ChenJC, LiuYH, 2021. LRP5 and LRP6 in Wnt signaling: similarity and divergence. Front Cell Dev Biol, 9:670960.

[62]ReyesM, FloresT, BetancurD, et al., 2020. Wnt/β-catenin signaling in oral carcinogenesis. Int J Mol Sci, 21(13):4682.

[63]RobertBM, DakshinamoorthyM, Ganapathyagraharam RamamoorthyB, et al., 2018. Predicting tumor sensitivity to chemotherapeutic drugs in oral squamous cell carcinoma patients. Sci Rep, 8:15545.

[64]RoslanZ, MuhamadM, SelvaratnamL, et al., 2019. The roles of low-density lipoprotein receptor-related proteins 5, 6, and 8 in cancer: a review. J Oncol, 2019:4536302.

[65]SaP, SinghP, PandaS, et al., 2024. Reversal of cisplatin resistance in oral squamous cell carcinoma by piperlongumine loaded smart nanoparticles through inhibition of Hippo-YAP signaling pathway. Transl Res, 268:63-78.

[66]SajeevA, BharathwajChettyB, VishwaR, et al., 2023. Crosstalk between non-coding RNAs and Wnt/β-catenin signaling in head and neck cancer: identification of novel biomarkers and therapeutic agents. Non-coding RNA, 9(5):63.

[67]SakamotoT, KawanoS, MatsubaraR, et al., 2017. Critical roles of Wnt5a‒Ror2 signaling in aggressiveness of tongue squamous cell carcinoma and production of matrix metalloproteinase-2 via ΔNp63β-mediated epithelial-mesenchymal transition. Oral Oncol, 69:15-25.

[68]ShenYH, ChenYL, LinYT, et al., 2023. CDK5RAP2 is a Wnt target gene and promotes stemness and progression of oral squamous cell carcinoma. Cell Death Dis, 14(2):107.

[69]ShiahSG, ShiehYS, ChangJY, 2015. The role of Wnt signaling in squamous cell carcinoma. J Dent Res, 95(2):129-134.

[70]SilvaJPN, PintoB, MonteiroL, et al., 2023. Combination therapy as a promising way to fight oral cancer. Pharmaceutics, 15(6):1653.

[71]SilveiraFM, SchmidtTR, NeumannB, et al., 2023. Impact of photobiomodulation in a patient-derived xenograft model of oral squamous cell carcinoma. Oral Dis, 29(2):547-556.

[72]SmithAJ, SompelKM, ElangoA, et al., 2021. Non-coding RNA and frizzled receptors in cancer. Front Mol Biosci, 8:712546.

[73]SompelK, ElangoA, SmithAJ, et al., 2021. Cancer chemoprevention through Frizzled receptors and EMT. Discov Oncol, 12:32.

[74]SrivastavaG, MattaA, FuGD, et al., 2015. Anticancer activity of pyrithione zinc in oral cancer cells identified in small molecule screens and xenograft model: implications for oral cancer therapy. Mol Oncol, 9(8):1720-1735.

[75]SunLL, KangXD, WangC, et al., 2023. Single-cell and spatial dissection of precancerous lesions underlying the initiation process of oral squamous cell carcinoma. Cell Discov, 9:28.

[76]TakabatakeK, KawaiH, OmoriH, et al., 2020. Impact of the stroma on the biological characteristics of the parenchyma in oral squamous cell carcinoma. Int J Mol Sci, 21(20):7714.

[77]TakeshitaA, IwaiS, MoritaY, et al., 2014. Wnt5b promotes the cell motility essential for metastasis of oral squamous cell carcinoma through active Cdc42 and RhoA. Int J Oncol, 44(1):59-68.

[78]TanYH, WangZH, XuMT, et al., 2023. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci, 15:44.

[79]TasoulasJ, SrivastavaS, XuXN, et al., 2023. Genetically engineered mouse models of head and neck cancers. Oncogene, 42(35):2593-2609.

[80]TianJG, CuiXG, FengYD, et al., 2018. Inhibition of WNT7A-β-catenin signaling pathway sensitizes oral squamous cell carcinoma to cisplatin. Int J Clin Exp Pathol, 11(10):4926-4933.

[81]UmarSA, DongB, NihalM, et al., 2022. Frizzled receptors in melanomagenesis: from molecular interactions to target identification. Front Oncol, 12:1096134.

[82]UrzìO, GasparroR, CostanzoE, et al., 2023. Three-dimensional cell cultures: the bridge between in vitro and in vivo models. Int J Mol Sci, 24(15):12046.

[83]VahleAK, KeremA, ÖztürkE, et al., 2012. Optimization of an orthotopic murine model of head and neck squamous cell carcinoma in fully immunocompetent mice ‒ role of toll-like-receptor 4 expressed on host cells. Cancer Lett, 317(2):199-206.

[84]VerrelleP, GestraudP, PoyerF, et al., 2024. Integrated high-throughput screening and large-scale isobolographic analysis to accelerate the discovery of radiosensitizers with greater selectivity for cancer cells. Int J Radiat Oncol Biol Phys, 118(5):1294-1307.

[85]VijayakumarG, NarwalA, KambojM, et al., 2020. Association of SOX2, OCT4 and WNT5A expression in oral epithelial dysplasia and oral squamous cell carcinoma: an immunohistochemical study. Head Neck Pathol, 14(3):749-757.

[86]WalrathJC, HawesJJ, van DykeT, et al., 2010. Genetically engineered mouse models in cancer research. Adv Cancer Res, 106:113-164.

[87]WangYF, CaoZ, LiuFJ, et al., 2021. Clinical significance of activated Wnt/β-catenin signaling in apoptosis inhibition of oral cancer. Open Life Sci, 16(1):1045-1052.

[88]WangZM, LuoJQ, XuLY, et al., 2018. Harnessing low-density lipoprotein receptor protein 6 (LRP6) genetic variation and Wnt signaling for innovative diagnostics in complex diseases. Pharmacogenomics J, 18(3):351-358.

[89]WanigasekaraJ, CullenPJ, BourkeP, et al., 2023. Advances in 3D culture systems for therapeutic discovery and development in brain cancer. Drug Discov Today, 28(2):103426.

[90]XieH, MaYD, LiJ, et al., 2020. WNT7A promotes EGF-induced migration of oral squamous cell carcinoma cells by activating β-catenin/MMP9-mediated signaling. Front Pharmacol, 11:98.

[91]XieJ, HuangL, LuYG, et al., 2021. Roles of the Wnt signaling pathway in head and neck squamous cell carcinoma. Front Mol Biosci, 7:590912.

[92]XuF, PengLL, FengJY, et al., 2023. A prediction model of nodal metastasis in cN0 oral squamous cell carcinoma using metabolic and pathological variables. Cancer Imaging, 23:34.

[93]YangWB, ZhangSH, LiTL, et al., 2023. Single-cell analysis reveals that cancer-associated fibroblasts stimulate oral squamous cell carcinoma invasion via the TGF-β/Smad pathway. Acta Biochim Biophys Sin (Shanghai), 55(2):262-273. https://cstr.cn/32197.14.abbs.2022132

[94]YuFY, YuCH, LiFF, et al., 2021. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther, 6:307.

[95]YuanY, XieXY, JiangYC, et al., 2017. LRP6 is identified as a potential prognostic marker for oral squamous cell carcinoma via MALDI-IMS. Cell Death Dis, 8(9):e3035.

[96]ZanellaER, GrassiE, TrusolinoL, 2022. Towards precision oncology with patient-derived xenografts. Nat Rev Clin Oncol, 19(11):719-732.

[97]ZengCM, ChenZ, FuL, 2018. Frizzled receptors as potential therapeutic targets in human cancers. Int J Mol Sci, 19(5):1543.

[98]ZhangCP, HaoYL, SunYY, et al., 2019. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis. J Pharmacol Sci, 140(2):128-136.

[99]ZhangEJ, LiZN, XuZF, et al., 2015. Frizzled2 mediates the migration and invasion of human oral squamous cell carcinoma cells through the regulation of the signal transducer and activator of transcription-3 signaling pathway. Oncol Rep, 34(6):3061-3067.

[100]ZhangY, LiuSH, QuDW, et al., 2017. Kif4A mediate the accumulation and reeducation of THP-1 derived macrophages via regulation of CCL2-CCR2 expression in crosstalking with OSCC. Sci Rep, 7:2226.

[101]ZhangYH, ZhangYS, NiuWW, et al., 2021. Experimental study of almonertinib crossing the blood-brain barrier in EGFR-mutant NSCLC brain metastasis and spinal cord metastasis models. Front Pharmacol, 12:750031.

[102]ZhangYL, ZuD, ChenZ, et al., 2020. An update on Wnt signaling pathway in cancer. Transl Cancer Res, 9(2):1246-1252.

[103]ZhangYQ, LiuCX, DuanXL, et al., 2014. CREPT/RPRD1B, a recently identified novel protein highly expressed in tumors, enhances the β-catenin·TCF4 transcriptional activity in response to Wnt signaling. J Biol Chem, 289(33):22589-22599.

[104]ZhaoBR, QinX, FuR, et al., 2024. Supramolecular nanodrug targeting CDK4/6 overcomes BAG1 mediated cisplatin resistance in oral squamous cell carcinoma. J Control Release, 368:623-636.

[105]ZhongL, LiuYT, WangK, et al., 2018. Biomarkers: paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer, 18:911.

[106]ZhuEX, LiXM, ZhuL, et al., 2005. Expression of Wnt5a and β-catenin in Chinese oral squamous cell carcinoma of tongue. J Hard Tissue Biol, 14(2):247-248.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE