Full Text:   <935>

Summary:  <108>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-08-25

Received: 2024-09-19

Revision Accepted: 2024-12-26

Crosschecked: 2025-08-25

Cited: 0

Clicked: 716

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zheng MA

https://orcid.org/0000-0002-1446-0708

Yifan ZHU

https://orcid.org/0009-0000-4003-3315

Tao HAN

https://orcid.org/0000-0003-1269-5834

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.8 P.805-812

http://doi.org/10.1631/jzus.B2400477


Improvement of neutral protease activity of Bacillus amyloliquefaciens LX-6 by combined ribosome engineering and medium optimization and its application in soybean meal fermentation


Author(s):  Yifan ZHU, Xinyi HUANG, Tao HAN, Jiteng WANG, Xiaoping YU, Zheng MA

Affiliation(s):  Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; more

Corresponding email(s):   mazheng520@163.com, goodhantao@gail.com

Key Words:  Bacillus amyloliquefaciens, Ribosome engineering, Fermentation optimization, Neutral protease, Soybean meal


Share this article to: More <<< Previous Article|

Yifan ZHU, Xinyi HUANG, Tao HAN, Jiteng WANG, Xiaoping YU, Zheng MA. Improvement of neutral protease activity of Bacillus amyloliquefaciens LX-6 by combined ribosome engineering and medium optimization and its application in soybean meal fermentation[J]. Journal of Zhejiang University Science B, 2025, 26(8): 805-812.

@article{title="Improvement of neutral protease activity of Bacillus amyloliquefaciens LX-6 by combined ribosome engineering and medium optimization and its application in soybean meal fermentation",
author="Yifan ZHU, Xinyi HUANG, Tao HAN, Jiteng WANG, Xiaoping YU, Zheng MA",
journal="Journal of Zhejiang University Science B",
volume="26",
number="8",
pages="805-812",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2400477"
}

%0 Journal Article
%T Improvement of neutral protease activity of Bacillus amyloliquefaciens LX-6 by combined ribosome engineering and medium optimization and its application in soybean meal fermentation
%A Yifan ZHU
%A Xinyi HUANG
%A Tao HAN
%A Jiteng WANG
%A Xiaoping YU
%A Zheng MA
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 8
%P 805-812
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2400477

TY - JOUR
T1 - Improvement of neutral protease activity of Bacillus amyloliquefaciens LX-6 by combined ribosome engineering and medium optimization and its application in soybean meal fermentation
A1 - Yifan ZHU
A1 - Xinyi HUANG
A1 - Tao HAN
A1 - Jiteng WANG
A1 - Xiaoping YU
A1 - Zheng MA
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 8
SP - 805
EP - 812
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2400477


Abstract: 
soybean meal (SBM) prepared by soybean crushing is the most popular protein source in the poultry and livestock industries (Cai et al., 2015) due to its economic manufacture, high protein content, and good nutritional value. Despite these benefits, SBM contains various antigen proteins such as glycinin and β-conglycinin, which account for approximately 70% of the total proteins of the SBM and reduce digestibility and damage intestinal function (Peng et al., 2018). Treating SBM with proteases (neutrase, alcalase, and trypsin) or fermentation can eliminate these antigen proteins (Contesini et al., 2018). Because of its safety and rapid growth cycle, Bacillus strains are considered ideal for the fermentation industry (Yao et al., 2021). SBM fermented by Bacillus yields products with high nutritional value and low levels of antinutritional factors (ANFs), stimulating research in this area (Yuan et al., 2017). Kumari et al. (2023) demonstrated that fermentation with Bacillus species effectively degrades antigen proteins and increases crude protein content. The degradation of antigen proteins relies on protease hydrolysis. Low protease production is the major obstacle hindering the widespread use of microbial fermentation techniques.

联合核糖体工程与培养基优化提高解淀粉芽孢杆菌LX-6中性蛋白酶活性及其在豆粕发酵中的应用

朱怡凡1, 黄心怡1, 韩涛2, 王骥腾2, 俞晓平1, 马正1
1中国计量大学生命科学学院, 国家市场监督管理总局微生物计量检测与生物制品质量安全重点实验室, 中国杭州市, 310018
2浙江海洋大学水产养殖学院, 中国杭州市, 316022
摘要:解淀粉芽孢杆菌(Bacillus amyloliquefaciens LX-6)因具有中性蛋白酶活性,在豆粕(soybean meal, SBM)发酵中具有较大应用潜力。本研究通过核糖体工程及培养基优化技术,提高解淀粉芽孢杆菌LX-6的中性蛋白酶活性。首先,利用核糖体工程技术从306个自发利福平抗性(Rif r)突变株中筛选出突变株5r-10。与野生型(WT)菌株LX-6相比,突变株的中性蛋白酶活性提高了38.45%。研究发现,突变株编码RNA聚合酶β亚基的rpoB基因在第469个氨基酸位点发生谷氨酸→精氨酸(glutamic acid→arginine,Glu→Arg)的突变;在形态上与WT菌株LX-6相比,突变株5r-10的细胞表面更光滑且鞭毛更少。随后,在摇瓶实验中,我们采用基于响应面方法的单因素实验和Box-Behnken设计,对菌株产中性蛋白酶培养基成分进行了优化。在最佳浓度的乳糖、酪蛋白和氯化钙(CaCl2)培养条件下,突变株5r-10的中性蛋白酶活性最高可以达到(3470.67±23.17) U/mL,是WT菌株LX-6在原始培养基中产生的中性蛋白酶活性的1.49倍。此外,与WT菌株LX-6相比,突变株5r-10在固体发酵过程中对SBM中大分子抗原蛋白的降解更快,即与LX-6发酵相比,经突变株5r-10发酵后,SBM中大豆球蛋白和β-伴大豆球蛋白的降解率显著增加。

关键词:解淀粉芽孢杆菌LX-6;核糖体工程;培养基优化;中性蛋白酶活性;豆粕

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]CaiL, IndrakumarS, KiarieE, et al., 2015. Effects of a multi-strain Bacillus species‍‒‍based direct-fed microbial on growth performance, nutrient digestibility, blood profile, and gut health in nursery pigs fed corn‍‒‍soybean meal‍‒based diets. J Anim Sci, 93(9):4336-4342.

[2]ContesiniFJ, de MeloRR, SatoHH, 2018. An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol, 38(3):321-334.

[3]HomayoonfalM, MalekjaniN, BaeghbaliV, et al., 2024. Optimization of spray drying process parameters for the food bioactive ingredients. Crit Rev Food Sci Nutr, 64(17):5631-5671.

[4]HuangXY, LiHJ, HanT, et al., 2023. Isolation and identification of protease-producing Bacillus amyloliquefaciens LX-6 and its application in the solid fermentation of soybean meal. Front Bioeng Biotechnol, 11:1226988.

[5]Koim-PuchowskaB, KłosowskiG, Dróżdż-AfeltJM, et al., 2021. Influence of the medium composition and the culture conditions on surfactin biosynthesis by a native Bacillus subtilis natto BS19 strain. Molecules, 26(10):2985.

[6]KumariR, SharmaN, SharmaS, et al., 2023. Production and characterization of bioactive peptides in fermented soybean meal produced using proteolytic Bacillus species isolated from kinema. Food Chem, 421:136130.

[7]KurosawaK, HosakaT, TamehiroN, et al., 2006. Improvement of α‍-amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168. Appl Environ Microbiol, 72(1):71-77.

[8]LeehanJD, NicholsonWL, 2021. The spectrum of spontaneous rifampin resistance mutations in the Bacillus subtilis rpoB gene depends on the growth environment. Appl Environ Microbiol, 87(22):e0123721.

[9]LeehanJD, NicholsonWL, 2022. Environmental dependence of competitive fitness in rifampin-resistant rpoB mutants of Bacillus subtilis. Appl Environ Microbiol, 88(5):e0242221.

[10]LiD, ZhangJH, TianYQ, et al., 2019. Enhancement of salinomycin production by ribosome engineering in Streptomyces albus. Sci China Life Sci, 62(2):276-279.

[11]NieL, ZhangRJ, ZhangLF, et al., 2021. Mutations in the regulatory regions result in increased streptomycin resistance and keratinase synthesis in Bacillus thuringiensis. Arch Microbiol, 203(9):5387-5396.

[12]PengCL, CaoCM, HeMC, et al., 2018. Soybean glycinin- and β‍-conglycinin-induced intestinal damage in piglets via the p38/JNK/NF‍-‍κB signaling pathway. J Agric Food Chem, 66(36):9534-9541.

[13]SongP, ZhangX, WangSH, et al., 2023. Microbial proteases and their applications. Front Microbiol, 14:1236368.

[14]SuzukiH, TaketaniT, KobayashiJ, et al., 2018. Antibiotic resistance mutations induced in growing cells of Bacillus-related thermophiles. J Antibiot (Tokyo), 71(3):382-389.

[15]WangTW, LiangC, AnYF, et al., 2020. Engineering the translational machinery for biotechnology applications. Mol Biotechnol, 62(4):219-227.

[16]XieFH, FengF, LiuDH, et al., 2022. Bacillus amyloliquefaciens 35M can exclusively produce and secrete proteases when cultured in soybean-meal-based medium. Colloids Surf B Biointerfaces, 209:112188.

[17]YaoYH, LiHY, LiJ, et al., 2021. Anaerobic solid-state fermentation of soybean meal with Bacillus sp. to improve nutritional quality. Front Nutr, 8:706977.

[18]YuanL, ChangJ, YinQQ, et al., 2017. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Anim Nutr, 3(1):19-24.

[19]ZhangJ, LiHH, ChenYF, et al., 2020. Microencapsulation of immunoglobulin Y: optimization with response surface morphology and controlled release during simulated gastrointestinal digestion. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(8):611-627.

[20]ZhouYJ, YangXX, LiQ, et al., 2023. Optimization of fermentation conditions for surfactin production by B. subtilis YPS-32. BMC Microbiol, 23:117.

[21]ZhuSB, DuanYW, HuangY, 2019. The application of ribosome engineering to natural product discovery and yield improvement in Streptomyces. Antibiotics (Basel), 8(3):133.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE