CLC number: TM27; TM619
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-03-18
Cited: 3
Clicked: 7457
Pei-hong Wang, Kai Tao, Zhuo-qing Yang, Gui-fu Ding. Resin-bonded NdFeB micromagnets for integration into electromagnetic vibration energy harvesters[J]. Journal of Zhejiang University Science C, 2013, 14(4): 283-287.
@article{title="Resin-bonded NdFeB micromagnets for integration into electromagnetic vibration energy harvesters",
author="Pei-hong Wang, Kai Tao, Zhuo-qing Yang, Gui-fu Ding",
journal="Journal of Zhejiang University Science C",
volume="14",
number="4",
pages="283-287",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C12MNT08"
}
%0 Journal Article
%T Resin-bonded NdFeB micromagnets for integration into electromagnetic vibration energy harvesters
%A Pei-hong Wang
%A Kai Tao
%A Zhuo-qing Yang
%A Gui-fu Ding
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 4
%P 283-287
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C12MNT08
TY - JOUR
T1 - Resin-bonded NdFeB micromagnets for integration into electromagnetic vibration energy harvesters
A1 - Pei-hong Wang
A1 - Kai Tao
A1 - Zhuo-qing Yang
A1 - Gui-fu Ding
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 4
SP - 283
EP - 287
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C12MNT08
Abstract: A micromachining technique is presented for the fabrication of resin-bonded permanent magnets in the microscale. Magnetic paste is prepared from ndFeB powder and an epoxy resin, filled into lithographically defined photoresist molds or metal molds, and formed into resin-bonded magnets after curing at room temperature. A coercivity of 772.4 kA/m, a remanence of 0.27 T, and a maximum energy product of 22.6 kJ/m3 have been achieved in an ndFeB disk micromagnet with dimensions of Ф200 μm×70 μm. Based on the developed micro-patterning of resin-bonded magnets, a fully integrated electromagnetic vibration energy harvester has been designed and fabricated. The dimensions of the energy harvester are only 4.5 mm×4.5 mm×1.0 mm, and those of the micromagnet are 1.5 mm×1.5 mm×0.2 mm. This microfabrication technique can be used for producing permanent magnets tens or hundreds of micrometers in size for use in various magnetic devices.
[1]Arnold, D.P., Wang, N., 2009. Permanent magnets for MEMS. J. Microelectromech. Syst., 18(6):1255-1266.
[2]Cho, H.J., Ahn, C.H., 2003. Microscale resin-bonded permanent magnets for magnetic micro-electro-mechanical systems applications. J. Appl. Phys., 93(10):8674-8676.
[3]Cugat, O., Delamare, J., Reyne, G., 2003. Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magn., 39(6):3607-3612.
[4]Dutoit, B.M., Bese, P.A., Blanchard, H., Guerin, L., Popovic, R.S., 1999. High performance micromachined Sm2Co17 polymer bonded magnets. Sens. Actuat. A, 77(3):178-182.
[5]Lagorce, L.K., Allen, M.G., 1997. Magnetic and mechanical properties of micromachined strontium ferrite/polyimide composite. J. Microelectromech. Syst., 6(4):307-312.
[6]Molian, R., Molian, P., 2009. Pulsed laser deposition and annealing of Dy-Fe-B thin films on melt-spun Nd-Fe-B ribbons for improved magnetic performance. J. Magn. Magn. Mater., 321(4):241-246.
[7]Nakano, M., Shibata, S., Yanai, T., Fukunaga, H., 2009. Anisotropic properties in Fe-Pt thick film magnets. J. Appl. Phys., 105(7):07A732.
[8]Sun, X., Yuan, Q., Fang, D., Zhang, H., 2012. Electrodeposition and characterization of CoNiMnP permanent magnet arrays for MEMS sensors and actuators. Sens. Actuat. A, 188:190-197.
[9]Tao, K., Ding, G., Yang, Z., Wang, Y., Wang, P., 2011. Fabrication and characterization of bonded NdFeB microstructures for microelectromechanical systems applications. Adv. Mater. Res., 211-212:561-564.
[10]Walther, A., Marcoux, C., Desloges, B., Grechishkin, R., Givord, D., Dempsey, N.M., 2009. Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems. J. Magn. Magn. Mater., 321(6):590-594.
[11]Wang, N., Arnold, D.P., 2009. Fully Batch-Fabricated MEMS Magnetic Vibrational Energy Harvesters. Proc. PowerMEMS, p.348-351.
[12]Wang, N., Bowers, B.J., Arnold, D.P., 2008. Wax-bonded NdFeB micromagnets for microelectromechanical systems applications. J. Appl. Phys., 103(7):07E109.
[13]Wang, P., Liu, H., Dai, X., Yang, Z., Wang, Z., Zhao, X., 2012. Design, simulation, fabrication and characterization of a micro electromagnetic vibration energy harvester with sandwiched structure and air channel. Microelectron. J., 43(2):154-159.
[14]Yang, F., Liu, W., Cui, W.B., Yao, Q., Zhao, X.G., Zhang, Z.D., 2009. Structure and magnetic properties of high coercive [PrFeBx/Cu]n films with out-of-plane orientation. Mater. Lett., 63(21):1866-1868.
[15]Zhang, Q., Chen, S.J., Baumgartel, L., Lin, A., Kim, E.S., 2011. Microelectromagnetic Energy Harvester with Integrated Magnets. 16th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, p.1657-1660.
Open peer comments: Debate/Discuss/Question/Opinion
<1>