Full Text:   <2222>

Summary:  <1633>

CLC number: TP273; U461.6

On-line Access: 2016-06-06

Received: 2015-07-06

Revision Accepted: 2016-02-16

Crosschecked: 2016-05-06

Cited: 1

Clicked: 5776

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kyong-il Kim

http://orcid.org/0000-0001-8664-2095

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.6 P.576-586

http://doi.org/10.1631/FITEE.1500211


Active steering control strategy for articulated vehicles


Author(s):  Kyong-il Kim, Hsin Guan, Bo Wang, Rui Guo, Fan Liang

Affiliation(s):  State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China; more

Corresponding email(s):   kimkyongil@163.com, guor@jlu.edu.cn

Key Words:  Articulated vehicle, Sharp curve, Lateral stability, Linear quadratic regulator (LQR)


Kyong-il Kim, Hsin Guan, Bo Wang, Rui Guo, Fan Liang. Active steering control strategy for articulated vehicles[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(6): 576-586.

@article{title="Active steering control strategy for articulated vehicles",
author="Kyong-il Kim, Hsin Guan, Bo Wang, Rui Guo, Fan Liang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="6",
pages="576-586",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500211"
}

%0 Journal Article
%T Active steering control strategy for articulated vehicles
%A Kyong-il Kim
%A Hsin Guan
%A Bo Wang
%A Rui Guo
%A Fan Liang
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 6
%P 576-586
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500211

TY - JOUR
T1 - Active steering control strategy for articulated vehicles
A1 - Kyong-il Kim
A1 - Hsin Guan
A1 - Bo Wang
A1 - Rui Guo
A1 - Fan Liang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 6
SP - 576
EP - 586
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500211


Abstract: 
To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator (LQR) theory. First, a three-degree-of-freedom (3-DOF) model of the tractor-trailer with steered trailer axles is built. The simulated annealing particle swarm optimization (SAPSO) algorithm is applied to identify the key parameters of the model under specified vehicle speed and steering wheel angle. Thus, the key parameters of the simplified model can be obtained according to the vehicle conditions using an online look-up table and interpolation. Simulation results show that vehicle parameter outputs of the simplified model and TruckSim agree well, thus providing the ideal reference yaw rate for the controller. Then the active steering controller of the tractor and trailer based on LQR is designed to follow the desired yaw rate and minimize their side-slip angle of the center of gravity (CG) at the same time. Finally, simulation tests at both low speed and high speed are conducted based on the TruckSim-Simulink program. The results show significant effects on the active steering controller on improving maneuverability at low speed and lateral stability at high speed for the articulated vehicle. The control strategy is applicable for steering not only along gentle curves but also along sharp curves.

This manuscript presents an active steering controller for manipulating the steering angle of the wheels of the tractor rear axle and the semitrailer three axles of a tractor/semi-trailer combination. The controller is designed based on the LQR technique using a linear yaw-plane 3-DOF model. The numerical simulation is conducted to validate the active steering controller.

铰接车辆的主动转向控制策略研究

目的:在车辆稳定性控制领域中,目前对两轴车的研究较为成熟,对多轴的铰接车辆模拟仍有待深入研究。现有的文献对铰接车辆的稳定性控制策略,主要采用挂车跟踪拖车轨迹的控制策略,不适用于直角弯工况。为解决这一问题,本文设计了适用于铰接车辆的跟踪理想横摆角速度和质心侧偏角的控制策略,适用于铰接车辆任意工况的稳定性控制。
创新点:首次将跟踪理想横摆角速度和质心侧偏角的控制策略用于铰接车辆。
方法:建立了3自由度铰接车辆简化模型,采用基于模拟退火的粒子群优化方法辨识简化模型的关键参数并形成三维场图,能根据铰接车辆的实时工况查表得出当前铰接车辆的关键参数。采用LQR方法设计了跟踪理想横摆角速度和质心侧偏角的控制策略。
结论:本文的控制策略能很好地减小铰接车辆的质心侧偏角(图22、23);能很好地跟踪理想的横摆角速度(图18、19);减小侧向加速度(图24、25)改善高速铰接车辆的稳定性并适用于直角弯工况(图14)。

关键词:铰接车辆;直角弯工况;稳定性控制;LQR

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cheng, C.Z., 2009. Enhancing Safety of Actively-Steered Articulated Vehicles. PhD Thesis, University of Cambridge, Cambridge, UK.

[2]Cheng, C.Z., Cebon, D., 2008. Improving roll stability of articulated heavy vehicles using active semi-trailer steering. Int. J. Veh. Mech. Mob., 46(S1):373-388.

[3]El-Gindy, M., Mrad, N., Tong, X., 2001. Sensitivity of rearward amplification control of a truck/full trailer to tyre cornering stiffness variations. Proc. Inst. Mech. Eng. Part D, 215(5):579-588.

[4]Gao,Y., Xie, S.L., 2004. Particle swarm optimization algorithms based on simulated annealing. Comput. Eng. Appl., 1:47-50 (in Chinese).

[5]Gong, C., Wang, Z.L., 2014. MATLAB Optimization Calculation (3rd Ed.). Publishing House of Electronics Industry, Beijing, China, p.270-312 (in Chinese).

[6]Hac, A., Fulk, D., Chen, H., 2008. Stability and control considerations of vehicle-trailer combination, SAE Int. J. Passeng. Cars Mech. Syst., 1(1):925-937.

[7]Hata, N., Hasegawa, S., Takahashi, S., et al., 1989. A Control Method for 4WS Truck to Suppress Excursion of a Body Rear Overhang. SAE Technical Paper 892521, p.754-760.

[8]He, Y., Islam, M., Webster, T., 2010. An integrated design method for articulated heavy vehicles with active trailer steering systems. SAE Int. J. Passeng. Cars Mech. Syst., 3(1):158-174.

[9]Islam, M., He, Y., 2011. An Optimal Preview Controller for Active Trailer Steering Systems of Articulated Heavy Vehicles. SAE Technical Paper 2011-01-0983.

[10]Jujnovich, B., Cebon, D., 2002. Comparative performance of semi-trailer steering systems. Proc. 7th Int. Symp. on Heavy Vehicle Weights & Dimensions, p.1-20.

[11]Jujnovich, B., Cebon, D., 2013. Path-following steering control for articulated vehicles. J. Dyn. Syst. Meas. Contr., 135(3):031006. http://dx.doiKamnik, R., Boettiger, F., Hunt, K., 2003. Roll dynamics and lateral load transfer estimation in articulated heavy freight vehicles. Proc. Inst. Mech. Eng. Part D, 217(11):985-997.

[12]Kamnik, R., Boettiger, F., Hunt, K., 2003. Roll dynamics and lateral load transfer estimation in articulated heavy freight vehicles. Proc. Inst. Mech. Eng. Part D, 217(11):985-997.

[13]Kusters, L.J.J., 1995. Increasing rollover safety of commercial vehicles by application of electronic systems. In: Pauwelussen, J.P., Pacejka, H.B. (Eds.), Smart Vehicles. Swets & Zeitlinger, the Netherlands, p.362-378.

[14]LeBlanc, P., El-Gindy, M., Woodrooffe, J., 1989. Self-Steering Axles: Theory and Practice. SAE Technical Paper 891633, p.156-170.

[15]Notsuet, I., Takahashi, S., Watanabe, Y., 1991. Investigation into Turning Behaviour of Semi-trailer with Additional Trailer-Wheel Steering – A Control Method for Trailer-Wheel Steering to Minimize Trailer Rear – Overhang Swing in Short Turns. SAE Technical Paper 912570, p.1007-1013.

[16]Palkovics, L., El-Gindy, M., 1996. Examination of different control strategies of heavy-vehicle performance. J. Dyn. Syst. Meas. Contr., 118(3):489-498.

[17]Rangavajhula, K., Tsao, H.S.J., 2007. Active trailer steering control of an articulated system with a tractor and three full trailers for tractor-track following. Int. J. Heavy Veh. Syst., 14(3):271-293.

[18]Rangavajhula, K., Tsao, H.S.J., 2008. Command steering of trailers and command-steering-based optimal control of an articulated system for tractor-track following. Proc. Inst. Mech. Eng. Part D, 222(6):935-954.

[19]Roebuck, R., Odhams, A., Tagesson, K., et al., 2013. Implementation of trailer steering control on a multi-unit vehicle at high speeds. J. Dyn. Syst. Meas. Contr., 136(2):021016.

[20]Truck and Bus Powertrain Steering Committee, 1993. A Test for Evaluating the Rearward Amplification of Multi-articulated Vehicles. SAE Standard J2179.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE