CLC number: TN929
On-line Access: 2017-02-10
Received: 2015-09-26
Revision Accepted: 2016-01-09
Crosschecked: 2017-01-03
Cited: 3
Clicked: 6758
Shafqat Ullah Khan, Ijaz Mansoor Qureshi, Fawad Zaman, Wasim Khan. Detecting faulty sensors in an array using symmetrical structure and cultural algorithm hybridized with differential evolution[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 235-245.
@article{title="Detecting faulty sensors in an array using symmetrical structure and cultural algorithm hybridized with differential evolution",
author="Shafqat Ullah Khan, Ijaz Mansoor Qureshi, Fawad Zaman, Wasim Khan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="2",
pages="235-245",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500315"
}
%0 Journal Article
%T Detecting faulty sensors in an array using symmetrical structure and cultural algorithm hybridized with differential evolution
%A Shafqat Ullah Khan
%A Ijaz Mansoor Qureshi
%A Fawad Zaman
%A Wasim Khan
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 2
%P 235-245
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500315
TY - JOUR
T1 - Detecting faulty sensors in an array using symmetrical structure and cultural algorithm hybridized with differential evolution
A1 - Shafqat Ullah Khan
A1 - Ijaz Mansoor Qureshi
A1 - Fawad Zaman
A1 - Wasim Khan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 2
SP - 235
EP - 245
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500315
Abstract: The detection of fully and partially defective sensors in a linear array composed of N sensors is addressed. First, the symmetrical structure of a linear array is proposed. Second, a hybrid technique based on the cultural algorithm with differential evolution is developed. The symmetrical structure has two advantages: (1) Instead of finding all damaged patterns, only (N–1)/2 patterns are needed; (2) We are required to scan the region from 0 to 90° instead of from 0 to 180°. Obviously, the computational complexity can be reduced. Monte Carlo simulations were carried out to validate the performance of the proposed scheme, compared with existing methods in terms of computational time and mean square error.
The paper presents a methodology to overcome sensor failures. The paper is well written and technically sound.
[1]Becerra, R.L., Coello, C.A.C., 2006. Cultured differential evolution for constrained optimization. Comput. Method Appl. Mech. Eng., 195(33-36):4303-4322.
[2]Bucci, O.M., Capozzoli, A., de Elia, G., 2000. Diagnosis of array faults from far-field amplitude-only data. IEEE Trans. Antennas Propag., 48(5):647-652.
[3]Choudhury, B., Acharya, O.P., Patnaik, A., 2013. Bacteria foraging optimization in antenna engineering: an application to array fault finding. Int. J. RF Microw. Comput.-Aid. Eng., 23(2):141-148.
[4]Das, S., Konar, A., 2006. Two-dimensional IIR filter design with modern search heuristics: a comparative study. Int. J. Comput. Intell. Appl., 6(3):329-355.
[5]Fonollosa, J., Vergara, A., Huerta, R., 2013. Algorithmic mitigation of sensor failure: is sensor replacement really necessary Sens. Actuat. B., 183:211-221.
[6]Jin, X.D., Reynolds, R.G., 1999. Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach. Proc. Congress on Evolutionary Computation, p.1672-1678.
[7]Khan, S.U., Qureshi, I.M., Zaman, F., et al., 2013. Null placement and sidelobe suppression in failed array using symmetrical element failure technique and hybrid heuristic computation. Prog. Electromagn. Res. B, 52:165-184.
[8]Khan, S.U., Qureshi, I.M., Zaman, F., et al., 2014. Correction of faulty sensors in phased array radars using symmetrical sensor failure technique and cultural algorithm with differential evolution. Sci. World J., 2014:852539.
[9]Khan, S.U., Qureshi, I.M., Naveed, A., et al., 2015. Detection of defective sensors in phased array using compressed sensing and hybrid genetic algorithm. J. Sens., 501: 718914.
[10]Mailloux, R.J., 1996. Array failure correction with a digitally beamformed array. IEEE Trans. Antennas Propag., 44(12):1543-1550.
[11]Oliveri, G., Donelli, M., Massa, A., 2009. Linear array thinning exploiting almost difference sets. IEEE Trans. Antennas Propag., 57(12):3800-3812.
[12]Oliveri, G., Manica, L., Massa, A., 2010. ADS-based guidelines for thinned planar arrays. IEEE Trans. Antennas Propag., 58(6):1935-1948.
[13]Patnaik, A., Choudhury, B., Pradhan, P., et al., 2007. An ANN application for fault finding in antenna arrays. IEEE Trans. Antennas Propag., 55(3):775-777.
[14]Reynolds, R.G., 1994. An introduction to cultural algorithms. Proc. 3rd Annual Conf. on Evolutionary Programming, p.131-139.
[15]Reynolds, R.G., Chung, C.J., 1996a. A self-adaptive approach to representation shifts in cultural algorithms. Proc. IEEE Int. Conf. on Evolutionary Computation, p.94-99.
[16]Reynolds, R.G., Chung, C.J., 1996b. The use of cultural algorithms to evolve multiagent cooperation. Proc. Micro-Robot World Cup Soccer Tournament, p.53-56.
[17]Reynolds, R.G., Peng, B., 2005. Knowledge learning and social swarms in cultural systems. J. Math. Sociol., 29(2): 115-132.
[18]Rodríguez-González, J.A., Ares-Pena, F., Palacios, H., et al., 2000. Finding defective elements in planar arrays using genetic algorithms. Prog. Electromagn. Res., 29:25-37.
[19]Rodríguez-González, J.A., Ares-Pena, F., Fernández-Delgado, M., et al., 2009. Rapid method for finding faulty elements in antenna arrays using far field pattern samples. IEEE Trans. Antennas Propag., 57(6):1679-1683.
[20]Rogalsky, T., Kocabiyik, S., Derksen, R.W., 2000. Differential evolution in aerodynamic optimization. Can. Aeronaut. Space J., 46(4):183-190.
[21]Storn, R., Price, K., 1997. Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim., 11(4):341-359.
[22]Wolff, I., 1937. Determination of the radiating system which will produce a specified directional characteristic. Proc. Inst. Radio Eng., 25(5):630-643.
[23]Xu, N., Christodoulou, C.G., Barbin, S.E., et al., 2007. Detecting failure of antenna array elements using machine learning optimization. IEEE Antennas and Propagation Society Int. Symp., p.5753-5756.
[24]Yeo, B.K., Lu, Y.L., 1999. Array failure correction with a genetic algorithm. IEEE Trans. Antennas Propag., 47(5):823-828.
[25]Zaman, F., Qureshi, I.M., Naveed, A., et al., 2012a. Amplitude and directional of arrival estimation: comparison between different techniques. Prog. Electromagn. Res. B, 39:319-335.
[26]Zaman, F., Qureshi, I.M., Naveed, A., et al., 2012b. Joint estimation of amplitude, direction of arrival and range of near field sources using memetic computing. Prog. Electromagn. Res. C, 31:199-213.
Open peer comments: Debate/Discuss/Question/Opinion
<1>