Full Text:   <987>

Summary:  <996>

CLC number: TN244

On-line Access: 2021-05-17

Received: 2020-07-11

Revision Accepted: 2020-08-10

Crosschecked: 2021-03-29

Cited: 0

Clicked: 2091

Citations:  Bibtex RefMan EndNote GB/T7714


Xinxin Shang


Qingyang Yue


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.5 P.756-766


Passive mode-locked Er-doped fiber laser pulse generation based on titanium disulfide saturable absorber

Author(s):  Xinxin Shang, Linguang Guo, Huanian Zhang, Dengwang Li, Qingyang Yue

Affiliation(s):  Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China; more

Corresponding email(s):   huanian_zhang@163.com, qingyangyue@sdnu.edu.cn

Key Words:  Fiber laser, Passive mode-locked, Saturable absorber, Titanium disulfide

Share this article to: More <<< Previous Article|

Xinxin Shang, Linguang Guo, Huanian Zhang, Dengwang Li, Qingyang Yue. Passive mode-locked Er-doped fiber laser pulse generation based on titanium disulfide saturable absorber[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(5): 756-766.

@article{title="Passive mode-locked Er-doped fiber laser pulse generation based on titanium disulfide saturable absorber",
author="Xinxin Shang, Linguang Guo, Huanian Zhang, Dengwang Li, Qingyang Yue",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Passive mode-locked Er-doped fiber laser pulse generation based on titanium disulfide saturable absorber
%A Xinxin Shang
%A Linguang Guo
%A Huanian Zhang
%A Dengwang Li
%A Qingyang Yue
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 5
%P 756-766
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000341

T1 - Passive mode-locked Er-doped fiber laser pulse generation based on titanium disulfide saturable absorber
A1 - Xinxin Shang
A1 - Linguang Guo
A1 - Huanian Zhang
A1 - Dengwang Li
A1 - Qingyang Yue
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 5
SP - 756
EP - 766
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000341

In this study, titanium disulfide (TiS2) polyvinyl alcohol (PVA) film-type saturable absorber (SA) is synthesized with a modulation depth of 5.08% and a saturable intensity of 10.62 MW/cm2 by liquid-phase exfoliation and spin-coating methods. Since TiS2-based SA has a strong nonlinear saturable absorption property, two types of optical soliton were observed in a mode-locked Er-doped fiber laser. When the pump power was raised to 67.3 mW, a conventional mode-locked pulse train with a repetition rate of 1.716 MHz and a pulse width of 6.57 ps was generated, and the output spectrum centered at 1556.98 nm and 0.466 nm spectral width with obvious Kelly sidebands was obtained. Another type of mode-locked pulse train with the maximum output power of 3.92 mW and pulse energy of 2.28 nJ at the pump power of 517.2 mW was achieved when the polarization controllers were adjusted. Since TiS2-based SA has excellent nonlinear saturable absorption characteristics, broad applications in ultrafast photonic are expected.



摘要:本文采用液相剥离法和旋涂法合成调制深度为5.08%、饱和强度为10.62 MW/cm2的二硫化钛聚乙烯醇薄膜型可饱和吸收体。由于二硫化钛可饱和吸收体具有很强的非线性饱和吸收特性,在掺铒锁模光纤激光器中观测到两种类型的光孤子。当泵浦功率达到67.3mW时,产生重复率为1.716MHz、脉宽为6.57ps的传统锁模脉冲串,其输出光谱中心为1556.98nm、半高全宽为0.466nm,且有明显对称的Kelly边带。通过调整偏振控制器,得到另一种锁模脉冲,在517.2mW泵浦功率下,其最大输出功率为3.92mW,脉冲能量为2.28nJ。实验证明层状二维材料二硫化钛具有优异的非线性饱和吸收特性,在超快光子学领域具有广阔应用前景。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Bao QL, Zhang H, Wang Y, et al., 2009. Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 19(19):3077-3083.

[2]Butler SZ, Hollen SM, Cao LY, et al., 2013. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7(4):2898-2926.

[3]Cai JH, Chen H, Chen SP, et al., 2018. Compressibility of dissipative solitons in mode-locked all-normal-dispersion fiber lasers. J Lightw Technol, 36(11):2142-2151.

[4]Ciarrocchi A, Avsar A, Ovchinnikov D, et al., 2018. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat Commun, 9(1):919.

[5]Ding SN, Jin Y, Chen X, et al., 2015. Tunable electrochemiluminescence of CdSe@ZnSe quantum dots by adjusting ZnSe shell thickness. Electrochem Commun, 55:30-33.

[6]Dolui K, Sanvito S, 2016. Dimensionality-driven phonon softening and incipient charge density wave instability in TiS2. Europhys Lett, 115(4):47001.

[7]Fang CM, de Groot RA, Haas C, 1997. Bulk and surface electronic structure of 1 T-TiS2 and 1 T-TiSe2. Phys Rev B, 56(8):4455-4463.

[8]Friend RH, Yoffe AD, 1987. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv Phys, 36(1):1-94.

[9]Gao JJ, Zhou Y, Liu YJ, et al., 2019. Noise-like mode-locked Yb-doped fiber laser in a linear cavity based on SnS2 nanosheets as a saturable absorber. Appl Opt, 58(22):6007-6011.

[10]Ge YQ, Zhu ZF, Xu YH, et al., 2018. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv Opt Mater, 6(4):1701166.

[11]Ge YQ, Huang WC, Yang FM, et al., 2019. Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS) composite films and their applications in ultrafast photonics. Nanoscale, 11(14):6828-6837.

[12]Guo B, 2018. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin Opt Lett, 16(2):020004.

[13]Guo B, Xiao QL, Wang SH, et al., 2019. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photon Rev, 13(12):1800327.

[14]Guo J, Zhao JL, Huang DZ, et al., 2019. Two-dimensional tellurium–polymer membrane for ultrafast photonics. Nanoscale, 11(13):6235-6242.

[15]Guo LG, Shang XX, Zhao R, et al., 2019. Nonlinear optical properties of ferromagnetic insulator Cr2Ge2Te6 and its application for demonstrating pulsed fiber laser. Appl Phys Expr, 12(8):082006.

[16]Guo SY, Zhang YP, Ge YQ, et al., 2019. 2D V-V binary materials: status and challenges. Adv Mater, 31(39):1902352.

[17]Hao C, Shen, YR, Wang, ZY, et al., 2016. Preparation and characterization of Fe2O3 nanoparticles by solid-phase method and its hydrogen peroxide sensing properties. ACS Sustain Chem Eng, 4(3):1069-1077.

[18]Hendry E, Hale PJ, Moger J, et al., 2010. Coherent nonlinear optical response of graphene. Phys Rev Lett, 105(9):097401.

[19]Hu QY, Zhang XY, Liu ZJ, et al., 2019. High-order harmonic mode-locked Yb-doped fiber laser based on a SnSe2 saturable absorber. Opt Laser Technol, 119:105639.

[20]Huang WC, Xing CY, Wang YZ, et al., 2018. Facile fabrication and characterization of two-dimensional bismuth(III) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale, 10(5):2404-2412.

[21]Huang WC, Zhang Y, You Q, et al., 2019. Enhanced photodetection properties of Tellurium@Selenium roll-to-roll nanotube heterojunctions. Small, 15(23):1900902.

[22]Huang WC, Li C, Gao LF, et al., 2020. Emerging black phosphorus analogue nanomaterials for high-performance device applications. J Mater Chem C, 8(4):1172-1197.

[23]Jiang XT, Zhang LJ, Liu SX, et al., 2018. Ultrathin metal– organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. Adv Opt Mater, 6(16):1800561.

[24]Keller U, 2003. Recent developments in compact ultrafast lasers. Nature, 424(6950):831-838.

[25]Li L, Pang LH, Zhao QY, et al., 2020a. Niobium disulfide as a new saturable absorber for an ultrafast fiber laser. Nanoscale, 12(7):4537-4543.

[26]Li L, Pang LH, Zhao QY, et al., 2020b. VSe2 nanosheets for ultrafast fiber lasers. J Mater Chem C, 8(3):1104-1109.

[27]Li TY, Liu YH, Chitara B, et al., 2014. Li intercalation into 1D TiS2(en) chains. J Am Chem Soc, 136(8):2986-2989.

[28]Lin CW, Zhu XJ, Feng J, et al., 2013. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J Am Chem Soc, 135(13):5144-5151.

[29]Liu JS, Li XH, Guo YX, et al., 2019. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 15(38):1902811.

[30]Liu WJ, Liu ML, Liu XM, et al., 2020a. Recent advances of 2D materials in nonlinear photonics and fiber lasers. Adv Opt Mater, 8(8):1901631.

[31]Liu WJ, Liu ML, Liu XM, et al., 2020b. SnSSe as a saturable absorber for an ultrafast laser with superior stability. Opt Lett, 45(2):419-422.

[32]Mak KF, Lee C, Hone J, et al., 2010. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 105(13):136805.

[33]Ming N, Tao SN, Yang WQ, et al., 2018. Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber. Opt Expr, 26(7):9017-9026.

[34]Niu KD, Chen QY, Sun RY, et al., 2017. Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber. Opt Mater Expr, 7(11):3934-3943.

[35]Niu KD, Sun RY, Chen QY, et al., 2018. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photon Res, 6(2):72-76.

[36]Oktem B, Ülgüdür C, Ilday FÖ, 2010. Soliton–similariton fibre laser. Nat Photon, 4(5):307-311.

[37]Park KH, Choi J, Kim HJ, et al., 2008. Unstable single‐layered colloidal TiS2 nanodisks. Small, 4(7):945-950.

[38]Sandoval SJ, Chen XK, Irwin JC, 1992. Raman spectra of AgxTiS2 and lattice dynamics of TiS2. Phys Rev B, 45(24):14347-14353.

[39]Shah L, Fermann ME, Dawson JW, et al., 2006. Micro-machining with a 50 W, 50 µJ, sub-picosecond fiber laser system. Opt Expr, 14(25):12546-12551.

[40]Sheng QW, Feng M, Xin W, et al., 2013. Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber. Opt Expr, 21(12):14859-14866.

[41]Song YF, Shi XJ, Wu CF, et al., 2019. Recent progress of study on optical solitons in fiber lasers. Appl Phys Rev, 6(2):021313.

[42]Suri D, Siva V, Joshi S, et al., 2017. A study of electron and thermal transport in layered titanium disulphide single crystals. J Phys Conden Mat, 29(48):485708.

[43]Varma SJ, Kumar J, Liu Y, et al., 2017. 2D TiS2 layers: a superior nonlinear optical limiting material. Adv Opt Mater, 5(24):1700713.

[44]Wu LM, Xie ZJ, Lu L, et al., 2018. Few‐layer tin sulfide: a promising black‐phosphorus‐analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all‐optical switching and wavelength conversion. Adv Opt Mater, 6(2):1700985.

[45]Xie ZJ, Zhang F, Liang ZM, et al., 2019. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photon Res, 7(5):494-502.

[46]Xing CY, Xie ZJ, Liang ZM, et al., 2017. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv Opt Mater, 5(24):1700884.

[47]Xu NN, Ming N, Han XL, et al., 2019. Large-energy passively Q-switched Er-doped fiber laser based on CVD-Bi2Se3 as saturable absorber. Opt Mater Expr, 9(2):373-383.

[48]Xu NN, Ma PF, Fu SG, et al., 2020. Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations. Nanophotonics, 9(9):2783-2795.

[49]Xu XD, Liu W, Kim Y, et al., 2014. Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today, 9(5):604-630.

[50]Xu YJ, Shi Z, Shi XY, et al., 2019. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale, 11(31):14491-14527.

[51]Yan PG, Chen H, Yin JD, et al., 2017. Large-area tungsten disulfide for ultrafast photonics. Nanoscale, 9(5):1871-1877.

[52]Zeng ZY, Yin ZY, Huang X, et al., 2011. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem, 123(47):11289-11293.

[53]Zeng ZY, Sun T, Zhu JX, et al., 2012. An effective method for the fabrication of few‐layer‐thick inorganic nanosheets. Angew Chem Int, 51(36):9052-9056.

[54]Zhang HN, Liu J, 2016. Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1 μm region. Opt Lett, 41(6):1150-1152.

[55]Zhang HN, Ma PF, Zhu MX, et al., 2020. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics, 9(8):2557-2567.

[56]Zhang X, Tan QH, Wu JB, et al., 2016. Review on the Raman spectroscopy of different types of layered materials. Nanoscale, 8(12):6435-6450.

[57]Zhang XQ, Zhong Y, Xia XH, et al., 2018. Metal-embedded porous graphitic carbon fibers fabricated from bamboo sticks as a novel cathode for lithium–sulfur batteries. ACS Appl Mater Interf, 10(16):13598-13605.

[58]Zhao Y, Guo PL, Li XH, et al., 2019. Ultrafast photonics application of graphdiyne in the optical communication region. Carbon, 149:336-341.

[59]Zhu X, Chen S, Zhang M, et al., 2018. TiS2-based saturable absorber for ultrafast fiber lasers. Photon Res, 6(10):C44-C48.

[60]Zhu ZF, Zou YS, Hu WD, et al., 2016. Near-infrared plasmonic 2D semimetals for applications in communication and biology. Adv Funct Mater, 26(11):1793-1802.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE