Full Text:   <2268>

Summary:  <1173>

CLC number: TN453

On-line Access: 2021-02-01

Received: 2019-11-29

Revision Accepted: 2020-02-21

Crosschecked: 2020-10-27

Cited: 0

Clicked: 4478

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei Zou

https://orcid.org/0000-0002-8683-9880

Daming Ren

https://orcid.org/0000-0002-2903-2327

Xuecheng Zou

https://orcid.org/0000-0002-6404-5270

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.2 P.251-261

http://doi.org/10.1631/FITEE.1900653


A 0.20–2.43 GHz fractional-N frequency synthesizer with optimized VCO and reduced current mismatch CP


Author(s):  Wei Zou, Daming Ren, Xuecheng Zou

Affiliation(s):  School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding email(s):   weizou@hust.edu.cn, damingren@hust.edu.cn, estxczou@hust.edu.cn

Key Words:  Frequency synthesizer, Charge pump (CP), Voltage-controlled oscillator (VCO), Current mismatch, Phase noise


Wei Zou, Daming Ren, Xuecheng Zou. A 0.20–2.43 GHz fractional-N frequency synthesizer with optimized VCO and reduced current mismatch CP[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(2): 251-261.

@article{title="A 0.20–2.43 GHz fractional-N frequency synthesizer with optimized VCO and reduced current mismatch CP",
author="Wei Zou, Daming Ren, Xuecheng Zou",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="2",
pages="251-261",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900653"
}

%0 Journal Article
%T A 0.20–2.43 GHz fractional-N frequency synthesizer with optimized VCO and reduced current mismatch CP
%A Wei Zou
%A Daming Ren
%A Xuecheng Zou
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 2
%P 251-261
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900653

TY - JOUR
T1 - A 0.20–2.43 GHz fractional-N frequency synthesizer with optimized VCO and reduced current mismatch CP
A1 - Wei Zou
A1 - Daming Ren
A1 - Xuecheng Zou
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 2
SP - 251
EP - 261
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900653


Abstract: 
A 0.20–2.43 GHz fractional-N frequency synthesizer is presented for multi-band wireless communication systems, in which the scheme adopts low phase noise voltage-controlled oscillators (VCOs) and a charge pump (CP) with reduced current mismatch. VCOs that determine the out-band phase noise of a phase-locked loop (PLL) based frequency synthesizer are optimized using an automatic amplitude control technique and a high-quality factor figure-8-shaped inductor. A CP with a mismatch suppression architecture is proposed to improve the current match of the CP and reduce the PLL phase errors. Theoretical analysis is presented to investigate the influence of the current mismatch on the output performance of PLLs. Fabricated in a TSMC 0.18-µm CMOS process, the prototype operates from 0.20 to 2.43 GHz. The PLL synthesizer achieves an in-band phase noise of −96.8 dBc/Hz and an out-band phase noise of −122.8 dBc/Hz at the 2.43-GHz carrier. The root-mean-square jitter is 1.2 ps under the worst case, and the measured reference spurs are less than −65.3 dBc. The current consumption is 15.2 mA and the die occupies 850 µm×920 µm.

基于优化的压控振荡器和低电流失配电荷泵的0.20—2.43 GHz分数分频频率合成器


邹维,任达明,邹雪城
华中科技大学光学与电子信息学院,中国武汉市,430074

摘要:提出一种适用于多标准无线通信系统的0.20—2.43 GHz分数分频频率合成器方案,该方案采用低相位噪声压控振荡器和低电流失配电荷泵。由于压控振荡器的性能决定了锁相环型频率合成器的带外相位噪声,利用自动幅度控制技术和高品质因数的8字型电感对压控振荡器进行优化。为改善电荷泵电流匹配性能以及减小锁相环相位误差,提出一种具有失配抑制结构的电荷泵。通过理论分析,研究了电流失配对锁相环输出性能的影响。采用台积电0.18-μm CMOS工艺,模型输出频率从0.20 GHz变化到2.43 GHz。这一锁相环型频率合成器在2.43 GHz载波时实现的带内相位噪声为−96.8 dBc/Hz,带外相位噪声为−122.8 dBc/Hz。在最坏情况下,均方根抖动为1.2 ps,测量的参考杂散小于−65.3 dBc。消耗电流15.2 mA,芯片面积为850μm×920μm。

关键词:频率合成器;电荷泵;压控振荡器;电流失配;相位噪声

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Berny AD, Niknejad AM, Meyer RG, 2005. A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration. IEEE J Sol-State Circ, 40(4):909-917.

[2]Chang HH, Wang PY, Zhan JHC, et al., 2008. A fractional spur-free ADPLL with loop-gain calibration and phase-noise cancellation for GSM/GPRS/EDGE. IEEE Int Conf on Solid-State Circuits, p.200-201, 606.

[3]Chang WS, Huang PC, Lee TC, 2014. A fractional-N divider-less phase-locked loop with a subsampling phase detector. IEEE J Sol-State Circ, 49(12):2964-2975.

[4]Chiu WH, Chang TS, Lin TH, 2009. A charge pump current missmatch calibration technique for ΔΣ fractional-N PLLs in 0.18-μm CMOS. IEEE Asian Solid-State Circuits Conf, p.73-76.

[5]de Muer B, Steyaert MSJ, 2002. A CMOS monolithic ΔΣ-controlled fractional-N frequency synthesizer for DCS-1800. IEEE J Sol-State Circ, 37(7):835-844.

[6]Deng W, Musa A, Okada K, et al., 2012. A 0.38 mm2, 10 MHz–6.6 GHz quadrature frequency synthesizer using fractional-N injection-locked technique. IEEE Asian Solid State Circuits Conf, p.353-356.

[7]Deng W, Hara S, Musa A, et al., 2014. A compact and low-power fractionally injection-locked quadrature frequency synthesizer using a self-synchronized gating injection technique for software-defined radios. IEEE J Sol-State Circ, 49(9):1984-1994.

[8]Gao X, Klumperink EAM, Socci G, et al., 2010. Spur reduction techniques for phase-locked loops exploiting a sub-sampling phase detector. IEEE J Sol-State Circ, 45(9):1809-1821.

[9]Hara S, Okada K, Matsuzawa A, 2010. 10 MHz to 7 GHz quadrature signal generation using a divide-by-4/3, -3/2, -5/3, -2, -5/2, -3, -4, and -5 injection-locked frequency divider. Symp on VLSI Circuits, p.51-52.

[10]Hedayati H, Bakkaloglu B, Khalil W, 2009. A 1 MHz-bandwidth type-I ΔΣ fractional-N synthesizer for WiMAX applications. IEEE Int Conf on Solid-State Circuits, p.390-391, 391a.

[11]Hsu CM, Straayer MZ, Perrott MH, 2008. A low-noise, wide-BW 3.6 GHz digital ΔΣ fractional-N frequency synthesizer with a noise-shaping time-to-digital converter and quantization noise cancellation. IEEE Int Conf on Solid-State Circuits, p.340-617.

[12]Huh H, Koo Y, Lee KY, et al., 2005. Comparison frequency doubling and charge pump matching techniques for dual-band ΔΣ fractional-N frequency synthesizer. IEEE J Sol-State Circ, 40(11):2228-2236.

[13]Italia A, Ippolito CM, Palmisano G, 2012. A 1-mW 1.13–1.9 GHz CMOS LC VCO using shunt-connected switched-coupled inductors. IEEE Trans Circ Syst I, 59(6):1145-1155.

[14]Jeong CH, Kim KY, Kwon CK, et al., 2013. Digital calibration technique using a signed counter for charge pump mismatch in phase-locked loops. IET Circ Dev Syst, 7(6):313-318.

[15]Liang CF, Chen SH, Liu SI, 2008. A digital calibration technique for charge pumps in phase-locked systems. IEEE J Sol-State Circ, 43(2):390-398.

[16]Liao DY, Wang HC, Dai FF, et al., 2017. An 802.11a/b/g/n digital fractional-N PLL with automatic TDC linearity calibration for spur cancellation. IEEE J Sol-State Circ, 52(5):1210-1220.

[17]Lim CC, Ramiah H, Yin J, et al., 2016. A high-Q spiral inductor with dual-layer patterned floating shield in a class-B VCO achieving a 190.5-dBc/Hz FoM. IEEE Int Symp on Circuits and Systems, p.2759-2762.

[18]Mahmoud A, Fanori L, Mattsson T, et al., 2016. A 2.8-to-5.8 GHz harmonic VCO based on an 8-shaped inductor in a 28 nm UTBB FD-SOI CMOS process. Analog Integr Circ Signal Process, 88(3):391-399.

[19]Narayanan AT, Katsuragi M, Kimura K, et al., 2016. A fractional-N sub-sampling PLL using a pipelined phase-interpolator with an FoM of −250 dB. IEEE J Sol-State Circ, 51(7):1630-1640.

[20]Nuzzo P, Vengattaramane K, Ingels M, et al., 2009. A 0.1–5 GHz dual-VCO software-defined frequency synthesizer in 45 nm digital CMOS. Proc IEEE Radio Frequency Integrated Circuits Symp, p.321-324.

[21]Osmany SA, Herzel F, Scheytt JC, 2010. An integrated 0.6–4.6 GHz, 5–7 GHz, 10–14 GHz, and 20–28 GHz frequency synthesizer for software-defined radio applications. IEEE J Sol-State Circ, 45(9):1657-1668.

[22]Pamarti S, Jansson L, Galton I, 2004. A wideband 2.4-GHz delta-sigma fractional-NPLL with 1-Mb/s in-loop modulation. IEEE J Sol-State Circ, 39(1):49-62.

[23]Ruippo P, Lehtonen TA, Tchamov NT, 2010. An UMTS and GSM low phase noise inductively tuned LC VCO. IEEE Microw Wirel Compon Lett, 20(3):163-165.

[24]Sharkia A, Mirabbasi S, Shekhar S, 2018. A 0.01 mm2 4.6-to-5.6GHz sub-sampling type-I frequency synthesizer with –254 dB FOM. Proc IEEE Int Conf on Solid-State Circuits, p.256-258.

[25]Temporiti E, Albasini G, Bietti I, et al., 2004. A 700-kHz bandwidth ΣΔ fractional synthesizer with spurs compensation and linearization techniques for WCDMA applications. IEEE J Sol-State Circ, 39(9):1446-1454.

[26]Wang KJ, Swaminathan A, Galton I, 2008. Spurious tone suppression techniques applied to a wide-bandwidth 2.4 GHz fractional-N PLL. IEEE J Sol-State Circ, 43(12):2787-2797.

[27]Wu Y, Shahmohammadi M, Chen Y, et al., 2017. A 3.5–6.8-GHz wide-bandwidth DTC-assisted fractional-N all-digital PLL with a MASH ΣΔ-TDC for low in-band phase noise. IEEE J Sol-State Circ, 52(7):1885-1903.

[28]Yoon H, Lee Y, Kim JJ, et al., 2014. A wideband dual-mode LC-VCO with a switchable gate-biased active core. IEEE Trans Circ Syst II, 61(5):289-293.

[29]Yu SA, Baeyens Y, Weiner J, et al., 2011. A single-chip 125-MHz to 32-GHz signal source in 0.18-μm SiGe BiCMOS. IEEE J Sol-State Circ, 46(3):598-614.

[30]Yu YH, Chen JH, Chen YJE, 2018. A wideband 90-nm CMOS phase-locked loop with current mismatch calibration for spur reduction. IEEE Conf on Asia-Pacific Microwave, p.1504-1506.

[31]Zhang Z, Zhu G, Yue CP, 2019. 30.8 A 0.65V 12-to-16GHz sub-sampling PLL with 56.4fsrms integrated jitter and −256.4dB FoM. IEEE Int Conf on Solid-State Circuits, p.488-490.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE