Full Text:   <1033>

Summary:  <1084>

CLC number: O436.2

On-line Access: 2021-03-08

Received: 2020-04-06

Revision Accepted: 2020-06-10

Crosschecked: 2020-08-18

Cited: 0

Clicked: 2098

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.3 P.334-340


Graphene-metasurface for wide-incident-angle terahertz absorption

Author(s):  Ri-hui Xiong, Xiao-qing Peng, Jiu-sheng Li

Affiliation(s):  Center for THz Research, China Jiliang University, Hangzhou 310018, China; more

Corresponding email(s):   lijsh2008@126.com

Key Words:  Graphene-metasurface, Terahertz absorber, Omega-shaped graphene patterns

Ri-hui Xiong, Xiao-qing Peng, Jiu-sheng Li. Graphene-metasurface for wide-incident-angle terahertz absorption[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(3): 334-340.

@article{title="Graphene-metasurface for wide-incident-angle terahertz absorption",
author="Ri-hui Xiong, Xiao-qing Peng, Jiu-sheng Li",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Graphene-metasurface for wide-incident-angle terahertz absorption
%A Ri-hui Xiong
%A Xiao-qing Peng
%A Jiu-sheng Li
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 3
%P 334-340
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000079

T1 - Graphene-metasurface for wide-incident-angle terahertz absorption
A1 - Ri-hui Xiong
A1 - Xiao-qing Peng
A1 - Jiu-sheng Li
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 3
SP - 334
EP - 340
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000079

We demonstrate a graphene-metasurface structure for tunable wide-incident-angle terahertz wave absorption, which involves depositing planar arrays of omega-shaped graphene patterns on a silicon dioxide substrate. We also discuss how the graphene Fermi-level layer and various substrates affect the absorption characteristics. The absorption of the proposed terahertz absorber is above 80% at an incident angle of 0°–60° in frequencies ranging from 0.82 to 2.0 THz. Our results will be very beneficial in the application of terahertz wave communications and biomedical imaging/sensing systems.


摘要:针对可调宽带宽入射角太赫兹波吸收器,本文提出一种石墨烯超表面结构,该结构在二氧化硅基底上沉积了按平面阵列分布的欧米伽型石墨烯图案。讨论了石墨烯费米能级层和各种基底对吸收特性的影响。在0.82–2.0 THz频率范围内,当入射角为0°–60°时,该太赫兹吸收器的吸收率超过80%。本文研究成果将惠及太赫兹波通信和生物医学成像/传感系统的应用。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Amin M, Farhat M, Bağcı H, 2013. An ultra-broadband multilayered graphene absorber. Opt Expr, 21(24):29938-29948.

[2]Bouchon P, Koechlin C, Pardo F, et al., 2012. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt Lett, 37(6):1038-1040.

[3]Daraei OM, Goudarzi K, Bemani M, 2020. A tunable ultra-broadband terahertz absorber based on two layers of graphene ribbons. Opt Laser Technol, 122:105853.

[4]Esquius-Morote M, Gómez-Díaz JS, Perruisseau-Carrier J, 2014. Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans Terahertz Sci Technol, 4(1):116-122.

[5]He XY, Liu F, Lin FT, et al., 2019. Investigation of terahertz all-dielectric metamaterials. Opt Expr, 27(10):13831-13844.

[6]He XY, Lin FT, Liu F, et al., 2020a. Investigation of phonon scattering on the tunable mechanisms of terahertz graphene metamaterials. Nanomaterials, 10(1):39.

[7]He XY, Lin FT, Liu F, et al., 2020b. Tunable strontium titanate terahertz all-dielectric metamaterials. J Phys D, 53(15):155105.

[8]He YN, Zhang B, He T, et al., 2015. Optically-controlled metamaterial absorber based on hybrid structure. Opt Commun, 356:595-598.

[9]Hu FR, Zou TB, Quan BG, et al., 2014. Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Opt Commun, 332:321-326.

[10]Jnawali G, Rao Y, Yan HG, et al., 2013. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett, 13(2):524-530.

[11]Jo G, Choe M, Cho CY, et al., 2010. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 21(17):175201.

[12]Kim KS, Zhao Y, Jang H, et al., 2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230):706-710.

[13]Liu TT, Jiang XY, Zhou CB, et al., 2019a. Black phosphorus-based anisotropic absorption structure in the mid-infrared. Opt Expr, 27(20):27618-27627.

[14]Liu TT, Jiang XY, Wang HX, et al., 2019b. Tunable anisotropic absorption in monolayer black phosphorus using critical coupling. Appl Phys Expr, 13(1):012010.

[15]Liu Y, Zhong RB, Huang JB, et al., 2019. Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials. Opt Expr, 27(5):7393-7404.

[16]Long YF, Chen X, Cai GX, et al., 2018. Electrically tunable broadband terahertz absorption with hybrid-patterned graphene metasurfaces. Nanomaterials, 8(8):562.

[17]Othman MAK, Guclu C, Capolino F, 2013. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt Expr, 21(6):7614-7632.

[18]Shi CYY, He XY, Peng J, et al., 2019. Tunable terahertz hybrid graphene-metal patterns metamaterials. Opt Laser Technol, 114:28-34.

[19]Song ZY, Jiang MW, Deng YD, et al., 2020. Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material. Opt Commun, 464:125494.

[20]Su ZX, Yin JB, Zhao XP, 2015. Terahertz dual-band meta-material absorber based on graphene/MgF2 multilayer structures. Opt Expr, 23(2):1679-1690.

[21]Xiao SY, Wang T, Liu YB, et al., 2016. Tunable light trapping and absorption enhancement with graphene ring arrays. Phys Chem Chem Phys, 18(38):26661-26669.

[22]Xiao SY, Liu TT, Cheng L, et al., 2019. Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures. J Lightw Technol, 37(13):3290-3297.

[23]Zhang JF, Liu WB, Zhu ZH, et al., 2016. Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light. Sci Rep, 6:38086.

[24]Zhang Y, Feng YJ, Zhu B, et al., 2014. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt Expr, 22(19):22743.

[25]Zhang YB, Tan YW, Stormer HL, et al., 2005. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438(7065):201-204.

[26]Zhou RY, Wang C, Xu WD, et al., 2019. Biological applications of terahertz technology based on nanomaterials and nanostructures. Nanoscale, 11(8):3445-3457.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE