CLC number: TN248.1
On-line Access: 2021-03-08
Received: 2020-03-13
Revision Accepted: 2020-05-05
Crosschecked: 2020-06-05
Cited: 0
Clicked: 5021
Citations: Bibtex RefMan EndNote GB/T7714
Fu-yan Wu, Shi-qiang Wang, Hai-wei Chen, Hai-tao Huang. 2.3 μm nanosecond passive Q-switching of an LD-pumped Tm:YLF laser using gold nanorods as a saturable absorber[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(3): 312-317.
@article{title="2.3 μm nanosecond passive Q-switching of an LD-pumped Tm:YLF laser using gold nanorods as a saturable absorber",
author="Fu-yan Wu, Shi-qiang Wang, Hai-wei Chen, Hai-tao Huang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="3",
pages="312-317",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000110"
}
%0 Journal Article
%T 2.3 μm nanosecond passive Q-switching of an LD-pumped Tm:YLF laser using gold nanorods as a saturable absorber
%A Fu-yan Wu
%A Shi-qiang Wang
%A Hai-wei Chen
%A Hai-tao Huang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 3
%P 312-317
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000110
TY - JOUR
T1 - 2.3 μm nanosecond passive Q-switching of an LD-pumped Tm:YLF laser using gold nanorods as a saturable absorber
A1 - Fu-yan Wu
A1 - Shi-qiang Wang
A1 - Hai-wei Chen
A1 - Hai-tao Huang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 3
SP - 312
EP - 317
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000110
Abstract: Developing new saturable absorbers for use in the mid-infrared region has practical significance for short-pulsed lasers and related scientific and industrial applications. The performance of gold nanorods (GNRs) as saturable absorbers at novel mid-infrared wavelengths needs to be evaluated even though these benefit from ultrafast nonlinear responses and broadband saturable absorption. passive Q-switching of an LD-pumped 2.3 μm Tm:YLF laser using GNRs was successfully realized in this study. Pulses with an 843 ns pulse width and a 6.67 kHz repetition rate were achieved using this Q-switched laser. Results showed that GNRs provide promising passive Q-switches for 2.3 μm Tm-doped lasers.
[1]Allain JY, Monerie M, Poignant H, 1989. Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre. Electron Lett, 25(24):1660-1662.
[2]Braud A, Girard S, Doualan JL, et al., 2000. Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm. Phys Rev B, 61(8):5280-5292.
[3]Canbaz F, Yorulmaz I, Sennaroglu A, 2017a. 2.3-μm Tm3+: YLF laser passively Q-switched with a Cr2+:ZnSe saturable absorber. Opt Lett, 42(9):1656-1659.
[4]Canbaz F, Yorulmaz I, Sennaroglu A, 2017b. Kerr-lens mode-locked 2.3-μm Tm3+:YLF laser as a source of femtosecond pulses in the mid-infrared. Opt Lett, 42(19):3964-3967.
[5]Chao X, Jeffries JB, Hanson RK, 2013. Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 μm laser absorption sensor. Appl Phys B, 110(3):359-365.
[6]Diening A, Möbert PEA, Huber G, 1998. Diode-pumped continuous-wave, quasi-continuous-wave, and Q-switched laser operation of Yb3+,Tm3+:YLiF4 at 1.5 and 2.3 μm. J Appl Phys, 84(11):5900-5904.
[7]Ge Y, Zhu Z, Xu Y, et al., 2018. Ultrafast photonics: broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv Opt Mater, 6:1870014.
[8]Guillemot L, Loiko P, Braud A, et al., 2019. Continuous-wave Tm:YAlO3 laser at ~2.3 μm. Opt Lett, 44(20):5077-5080.
[9]Guillemot L, Loiko P, Soulard R, et al., 2020. Close look on cubic Tm:KY3F10 crystal for highly efficient lasing on the 3H4→3H5 transition. Opt Expr, 28(3):3451-3463.
[10]Guo B, Wang SH, Wu ZX, et al., 2018. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt Expr, 26(18):22750-22760.
[11]Huang HT, Li M, Wang L, et al., 2015. Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser. IEEE Photon J, 7(4):4501210.
[12]Huang HT, Li M, Liu P, et al., 2016. Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser. Opt Lett, 41(12):2700-2703.
[13]Huang HT, Liu P, Liu X, et al., 2017a. Near-diffraction-limited diode end-pumped 2 μm Tm:YAG InnoSlab laser. Laser Phys Lett, 14(4):045805.
[14]Huang HT, Wang H, Shen DY, 2017b. VBG-locked continuous-wave and passively Q-switched Tm:Y2O3 ceramic laser at 2.1 μm. Opt Mater Expr, 7(9):3147-3154.
[15]Huang HT, Wang SQ, Chen HW, et al., 2019. High power simultaneous dual-wavelength CW and passively-Q-switched laser operation of LD pumped Tm:YLF at 1.9 and 2.3 µm. Opt Expr, 27(26):38593-38601.
[16]Ji XY, Kong N, Wang JQ, et al., 2018. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv Mater, 30(36):1803031.
[17]Li PF, Chen Y, Yang TS, et al., 2017. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl Mater Interf, 9(14):12759-12765.
[18]Li ZJ, Qiao H, Guo ZN, et al., 2018. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability. Adv Funct Mater, 28(16):1705237.
[19]Luo HY, Kang Z, Gao Y, et al., 2019. Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm. Opt Expr, 27(4):4886-4896.
[20]Ma DT, Li YL, Mi HW, et al., 2018. Robust SnO2−x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew Chem, 130(29):9039-9043.
[21]McAleavey FJ, O’Gorman J, Donegan JF, et al., 1997. Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing. IEEE J Sel Top Quant Electron, 3(4):1103-1111.
[22]Morova Y, Tonelli M, Petrov V, et al., 2020. Upconversion pumping of a 2.3 µm Tm3+:KY3F10 laser with a 1064 nm ytterbium fiber laser. Opt Lett, 45(4):931-934.
[23]Muti A, Canbaz F, Tonelli M, et al., 2020. Graphene mode-locked operation of Tm3+:YLiF4 and Tm3+:KY3F10 lasers near 2.3 µm. Opt Lett, 45(3):656-659.
[24]Olesberg JT, Arnold MA, Mermelstein C, et al., 2005. Tunable laser diode system for noninvasive blood glucose measurements. Appl Spectrosc, 59(12):1480-1484.
[25]Pinto JF, Esterowitz L, Rosenblatt GH, 1994. Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm. Opt Lett, 19(12):883-885.
[26]Qian QZ, Wang N, Zhao SZ, et al., 2019. Gold nanorods as saturable absorbers for the passively Q-switched Nd:LLF laser at 1.34 μm. Chin Opt Lett, 17(4):041401.
[27]Song YF, Liang ZM, Jiang XT, et al., 2017. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater, 4(4):045010.
[28]Soulard R, Tyazhev A, Doualan JL, et al., 2017. 2.3 μm Tm3+: YLF mode-locked laser. Opt Lett, 42(18):3534-3536.
[29]Sudesh V, Piper JA, 2000. Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 μm. IEEE J Quant Electron, 36(7):879-884.
[30]Wang H, Huang HT, Liu P, et al., 2017. Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramic laser around 2050 nm. Opt Mater Expr, 7(2):296-303.
[31]Wang SQ, Huang HT, Chen HW, et al., 2019a. High efficiency nanosecond passively Q-switched 2.3 µm Tm:YLF laser using a ReSe2-based saturable output coupler. OSA Contin, 2(5):1676-1682.
[32]Wang SQ, Huang HT, Liu X, et al., 2019b. Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers. Opt Mater, 88:630-634.
[33]Wu LM, Xie ZJ, Lu L, et al., 2018. Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv Opt Mater, 6(2):1700985.
[34]Xie ZJ, Xing CY, Huang WC, et al., 2018. Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv Funct Mater, 28(16):1705833.
[35]Xie ZJ, Chen SY, Duo YH, et al., 2019a. Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics. ACS Appl Mater Interf, 11(25):22129-22140.
[36]Xie ZJ, Zhang F, Liang ZM, et al., 2019b. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photon Res, 7(5):494-502.
[37]Xie ZJ, Duo YH, Lin ZT, et al., 2020a. The rise of 2D photothermal materials beyond graphene for clean water production. Adv Sci, 7(5):1902236.
[38]Xie ZJ, Peng YP, Yu L, et al., 2020b. Solar-inspired water purification based on emerging 2D materials: status and challenges. Sol RRL, 4(3):1900400.
[39]Xing CY, Xie ZJ, Liang ZM, et al., 2017. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv Opt Mater, 5(24):1700884.
[40]Yorulmaz I, Sennaroglu A, 2018. Low-threshold diode pumped 2.3-μm Tm3+:YLF lasers. IEEE J Sel Top Quant Electron, 24(5):1601007.
[41]Zhang YP, Lim CK, Dai ZG, et al., 2019. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys Rep, 795:1-51.
Open peer comments: Debate/Discuss/Question/Opinion
<1>