Full Text:   <996>

Summary:  <1008>

CLC number: TN248.1

On-line Access: 2021-03-08

Received: 2020-03-13

Revision Accepted: 2020-05-05

Crosschecked: 2020-06-05

Cited: 0

Clicked: 2273

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Fu-yan Wu

https://orcid.org/0000-0003-2755-1518

Hai-tao Huang

https://orcid.org/0000-0002-2721-221X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.3 P.312-317

http://doi.org/10.1631/FITEE.2000110


2.3 μm nanosecond passive Q-switching of an LD-pumped Tm:YLF laser using gold nanorods as a saturable absorber


Author(s):  Fu-yan Wu, Shi-qiang Wang, Hai-wei Chen, Hai-tao Huang

Affiliation(s):  School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

Corresponding email(s):   wfyjsnu@126.com, wsq274412@126.com, haiwei0819@163.com, hht840211@163.com

Key Words:  Gold nanorods, Passive Q-switching, 2.3 μm, Tm-doped laser materials


Fu-yan Wu, Shi-qiang Wang, Hai-wei Chen, Hai-tao Huang. 2.3 μm nanosecond passive Q-switching of an LD-pumped Tm:YLF laser using gold nanorods as a saturable absorber[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(3): 312-317.

@article{title="2.3 μm nanosecond passive Q-switching of an LD-pumped Tm:YLF laser using gold nanorods as a saturable absorber",
author="Fu-yan Wu, Shi-qiang Wang, Hai-wei Chen, Hai-tao Huang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="3",
pages="312-317",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000110"
}

%0 Journal Article
%T 2.3 μm nanosecond passive Q-switching of an LD-pumped Tm:YLF laser using gold nanorods as a saturable absorber
%A Fu-yan Wu
%A Shi-qiang Wang
%A Hai-wei Chen
%A Hai-tao Huang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 3
%P 312-317
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000110

TY - JOUR
T1 - 2.3 μm nanosecond passive Q-switching of an LD-pumped Tm:YLF laser using gold nanorods as a saturable absorber
A1 - Fu-yan Wu
A1 - Shi-qiang Wang
A1 - Hai-wei Chen
A1 - Hai-tao Huang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 3
SP - 312
EP - 317
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000110


Abstract: 
Developing new saturable absorbers for use in the mid-infrared region has practical significance for short-pulsed lasers and related scientific and industrial applications. The performance of gold nanorods (GNRs) as saturable absorbers at novel mid-infrared wavelengths needs to be evaluated even though these benefit from ultrafast nonlinear responses and broadband saturable absorption. passive Q-switching of an LD-pumped 2.3 μm Tm:YLF laser using GNRs was successfully realized in this study. Pulses with an 843 ns pulse width and a 6.67 kHz repetition rate were achieved using this Q-switched laser. Results showed that GNRs provide promising passive Q-switches for 2.3 μm Tm-doped lasers.

基于金纳米棒饱和吸收体的LD泵浦Tm:YLF 2.3 μm 纳秒被动调Q激光器

吴福燕,王石强,陈海伟,黄海涛
江苏师范大学物理与电子工程学院,中国徐州市,221116
摘要:探索新型中红外波段饱和吸收体材料,评价其在特定波段的激光脉冲产生性能是激光技术领域的重要研究方向,对新波段短脉冲激光产生及其相关的科学和工业应用具有重要意义。金纳米棒具备超快的非线性响应和宽带可饱和吸收特性,其作为新颖中红外波段可饱和吸收体的性能需要研究与评价。本文成功实现基于金纳米棒饱和吸收体的2.3 μm LD泵浦Tm:YLF激光器的被动调Q运转,获得脉冲宽度为843 ns、重复频率为6.67 kHz的脉冲输出。结果表明,金纳米棒可以作为2.3 μm掺铥激光器有潜力的被动调Q开关材料。

关键词:金纳米棒;被动调Q;2.3 μm;掺铥激光材料

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Allain JY, Monerie M, Poignant H, 1989. Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre. Electron Lett, 25(24):1660-1662.

[2]Braud A, Girard S, Doualan JL, et al., 2000. Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm. Phys Rev B, 61(8):5280-5292.

[3]Canbaz F, Yorulmaz I, Sennaroglu A, 2017a. 2.3-μm Tm3+: YLF laser passively Q-switched with a Cr2+:ZnSe saturable absorber. Opt Lett, 42(9):1656-1659.

[4]Canbaz F, Yorulmaz I, Sennaroglu A, 2017b. Kerr-lens mode-locked 2.3-μm Tm3+:YLF laser as a source of femtosecond pulses in the mid-infrared. Opt Lett, 42(19):3964-3967.

[5]Chao X, Jeffries JB, Hanson RK, 2013. Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 μm laser absorption sensor. Appl Phys B, 110(3):359-365.

[6]Diening A, Möbert PEA, Huber G, 1998. Diode-pumped continuous-wave, quasi-continuous-wave, and Q-switched laser operation of Yb3+,Tm3+:YLiF4 at 1.5 and 2.3 μm. J Appl Phys, 84(11):5900-5904.

[7]Ge Y, Zhu Z, Xu Y, et al., 2018. Ultrafast photonics: broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv Opt Mater, 6:1870014.

[8]Guillemot L, Loiko P, Braud A, et al., 2019. Continuous-wave Tm:YAlO3 laser at ~2.3  μm. Opt Lett, 44(20):5077-5080.

[9]Guillemot L, Loiko P, Soulard R, et al., 2020. Close look on cubic Tm:KY3F10 crystal for highly efficient lasing on the 3H43H5 transition. Opt Expr, 28(3):3451-3463.

[10]Guo B, Wang SH, Wu ZX, et al., 2018. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt Expr, 26(18):22750-22760.

[11]Huang HT, Li M, Wang L, et al., 2015. Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser. IEEE Photon J, 7(4):4501210.

[12]Huang HT, Li M, Liu P, et al., 2016. Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser. Opt Lett, 41(12):2700-2703.

[13]Huang HT, Liu P, Liu X, et al., 2017a. Near-diffraction-limited diode end-pumped 2 μm Tm:YAG InnoSlab laser. Laser Phys Lett, 14(4):045805.

[14]Huang HT, Wang H, Shen DY, 2017b. VBG-locked continuous-wave and passively Q-switched Tm:Y2O3 ceramic laser at 2.1 μm. Opt Mater Expr, 7(9):3147-3154.

[15]Huang HT, Wang SQ, Chen HW, et al., 2019. High power simultaneous dual-wavelength CW and passively-Q-switched laser operation of LD pumped Tm:YLF at 1.9 and 2.3 µm. Opt Expr, 27(26):38593-38601.

[16]Ji XY, Kong N, Wang JQ, et al., 2018. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv Mater, 30(36):1803031.

[17]Li PF, Chen Y, Yang TS, et al., 2017. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl Mater Interf, 9(14):12759-12765.

[18]Li ZJ, Qiao H, Guo ZN, et al., 2018. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability. Adv Funct Mater, 28(16):1705237.

[19]Luo HY, Kang Z, Gao Y, et al., 2019. Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm. Opt Expr, 27(4):4886-4896.

[20]Ma DT, Li YL, Mi HW, et al., 2018. Robust SnO2−x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew Chem, 130(29):9039-9043.

[21]McAleavey FJ, O’Gorman J, Donegan JF, et al., 1997. Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing. IEEE J Sel Top Quant Electron, 3(4):1103-1111.

[22]Morova Y, Tonelli M, Petrov V, et al., 2020. Upconversion pumping of a 2.3  µm Tm3+:KY3F10 laser with a 1064  nm ytterbium fiber laser. Opt Lett, 45(4):931-934.

[23]Muti A, Canbaz F, Tonelli M, et al., 2020. Graphene mode-locked operation of Tm3+:YLiF4 and Tm3+:KY3F10 lasers near 2.3  µm. Opt Lett, 45(3):656-659.

[24]Olesberg JT, Arnold MA, Mermelstein C, et al., 2005. Tunable laser diode system for noninvasive blood glucose measurements. Appl Spectrosc, 59(12):1480-1484.

[25]Pinto JF, Esterowitz L, Rosenblatt GH, 1994. Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm. Opt Lett, 19(12):883-885.

[26]Qian QZ, Wang N, Zhao SZ, et al., 2019. Gold nanorods as saturable absorbers for the passively Q-switched Nd:LLF laser at 1.34  μm. Chin Opt Lett, 17(4):041401.

[27]Song YF, Liang ZM, Jiang XT, et al., 2017. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater, 4(4):045010.

[28]Soulard R, Tyazhev A, Doualan JL, et al., 2017. 2.3 μm Tm3+: YLF mode-locked laser. Opt Lett, 42(18):3534-3536.

[29]Sudesh V, Piper JA, 2000. Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 μm. IEEE J Quant Electron, 36(7):879-884.

[30]Wang H, Huang HT, Liu P, et al., 2017. Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramic laser around 2050 nm. Opt Mater Expr, 7(2):296-303.

[31]Wang SQ, Huang HT, Chen HW, et al., 2019a. High efficiency nanosecond passively Q-switched 2.3 µm Tm:YLF laser using a ReSe2-based saturable output coupler. OSA Contin, 2(5):1676-1682.

[32]Wang SQ, Huang HT, Liu X, et al., 2019b. Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers. Opt Mater, 88:630-634.

[33]Wu LM, Xie ZJ, Lu L, et al., 2018. Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv Opt Mater, 6(2):1700985.

[34]Xie ZJ, Xing CY, Huang WC, et al., 2018. Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv Funct Mater, 28(16):1705833.

[35]Xie ZJ, Chen SY, Duo YH, et al., 2019a. Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics. ACS Appl Mater Interf, 11(25):22129-22140.

[36]Xie ZJ, Zhang F, Liang ZM, et al., 2019b. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photon Res, 7(5):494-502.

[37]Xie ZJ, Duo YH, Lin ZT, et al., 2020a. The rise of 2D photothermal materials beyond graphene for clean water production. Adv Sci, 7(5):1902236.

[38]Xie ZJ, Peng YP, Yu L, et al., 2020b. Solar-inspired water purification based on emerging 2D materials: status and challenges. Sol RRL, 4(3):1900400.

[39]Xing CY, Xie ZJ, Liang ZM, et al., 2017. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv Opt Mater, 5(24):1700884.

[40]Yorulmaz I, Sennaroglu A, 2018. Low-threshold diode pumped 2.3-μm Tm3+:YLF lasers. IEEE J Sel Top Quant Electron, 24(5):1601007.

[41]Zhang YP, Lim CK, Dai ZG, et al., 2019. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys Rep, 795:1-51.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE