CLC number: TN248
On-line Access: 2021-03-08
Received: 2020-07-24
Revision Accepted: 2020-11-25
Crosschecked: 2021-01-18
Cited: 0
Clicked: 4467
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-2285-9812
Pinghua Tang, Mulin Luo, Ting Zhao, Yuliang Mao. Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(3): 303-311.
@article{title="Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser",
author="Pinghua Tang, Mulin Luo, Ting Zhao, Yuliang Mao",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="3",
pages="303-311",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000372"
}
%0 Journal Article
%T Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser
%A Pinghua Tang
%A Mulin Luo
%A Ting Zhao
%A Yuliang Mao
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 3
%P 303-311
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000372
TY - JOUR
T1 - Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser
A1 - Pinghua Tang
A1 - Mulin Luo
A1 - Ting Zhao
A1 - Yuliang Mao
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 3
SP - 303
EP - 311
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000372
Abstract: We demonstrate the generation of noise-like pulses (NLPs) and soliton rains in a graphene saturable absorber mode-locked erbium-doped fiber laser. Typical NLPs are obtained at a proper pump power and in a cavity polarization state. The soliton rain operation with multiple solitons can be achieved by finely adjusting the cavity polarization state. In addition, distinctive multi-soliton interactions are observed and investigated, including the fundamental mode-locking and multiple pulses. The experimental results can help further understand nonlinear pulse dynamics in ultrafast optics.
[1]Ahmad H, Samion MZ, Sharbirin AS, et al., 2017. Dual-wavelength, passively Q-switched thulium-doped fiber laser with N-doped graphene saturable absorber. Optik, 149:391-397.
[2]Ahmed MHM, Latiff AA, Arof H, et al., 2016. Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber. Laser Phys Lett, 13(9):095104.
[3]Bao QL, Zhang H, Wang Y, et al., 2009. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 19(19):3077-3083.
[4]Chouli S, Grelu P, 2010. Soliton rains in a fiber laser: an experimental study. Phys Rev A, 81(6):063829.
[5]Goloborodko V, Keren S, Rosenthal A, et al., 2003. Measuring temperature profiles in high-power optical fiber components. Appl Opt, 42(13):2284-2288.
[6]Gordon JP, 1992. Dispersive perturbations of solitons of the nonlinear Schrödinger equation. J Opt Soc Am B, 9(1):91-97.
[7]Jeong Y, Vazquez-Zuniga LA, Lee S, et al., 2014. On the formation of noise-like pulses in fiber ring cavity configurations. Opt Fiber Technol, 20(6):575-592.
[8]Kasim N, Latiff AA, Rusdi MFM, et al., 2018. Short-pulsed Q-switched Thulium doped fiber laser with graphene oxide as a saturable absorber. Optik, 168:462-466.
[9]Kobtsev S, Kukarin S, Smirnov S, et al., 2014. Cascaded SRS of single- and double-scale fiber laser pulses in long extra-cavity fiber. Opt Expr, 22(17):20770-20775.
[10]Li D, Xue H, Qi M, et al., 2017. Graphene actively Q-switched lasers. 2D Mater, 4(2):025095.
[11]Li J, Zhang ZL, Du L, et al., 2019. Highly stable femtosecond pulse generation from a MXene Ti3C2Tx (T=F, O, or OH) mode-locked fiber laser. Photon Res, 7(3):260-264.
[12]Liu J, Chen Y, Tang PH, et al., 2015. Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser. Opt Expr, 23(5):6418-6427.
[13]Liu J, Wu JD, Chen HL, et al., 2021. Short-pulsed Raman fiber laser and its dynamics. Sci China Phys Mech Astron, 64(1):214201.
[14]Luo AP, Luo ZC, Liu H, et al., 2015. Noise-like pulse trapping in a figure-eight fiber laser. Opt Expr, 23(8):10421-10427.
[15]Luo ZC, Liu M, Liu H, et al., 2013. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt Lett, 38(24):5212-5215.
[16]Ma CY, Huang WC, Wang YZ, et al., 2020. MXene saturable absorber enabled hybrid mode-locking technology: a new routine of advancing femtosecond fiber lasers performance. Nanophotonics, 9(8):2451-2458.
[17]Ma R, Rao YJ, Zhang WL, et al., 2019. Multimode random fiber laser for speckle-free imaging. IEEE J Sel Top Quant Electron, 25(1):0900106.
[18]Martinez A, Fuse K, Xu B, et al., 2010. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing. Opt Expr, 18(22):23054-23061.
[19]Meng YC, Zhang SM, Li XL, et al., 2012. Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser. Opt Expr, 20(6):6685-6692.
[20]Nelson LE, Jones DJ, Tamura K, et al., 1997. Ultrashort-pulse fiber ring lasers. Appl Phys B, 65(2):277-294.
[21]Ng EK, Lau KY, Lee HK, et al., 2020. Saturable absorber incorporating graphene oxide polymer composite through dip coating for mode-locked fiber laser. Opt Mater, 100:109619.
[22]Niang A, Amrani F, Salhi M, et al., 2014. Rains of solitons in a figure-of-eight passively mode-locked fiber laser. Appl Phys B, 116(3):771-775.
[23]Ning QY, Liu H, Zheng XW, et al., 2014. Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser. Opt Expr, 22(10):11900-11911.
[24]Ozgören K, Oktem B, Yilmaz S, et al., 2011. 83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining. Opt Expr, 19(18):17647-17652.
[25]Pawliszewska M, Martynkien T, Przewłoka A, et al., 2018. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Opt Lett, 43(1):38-41.
[26]Popa D, Sun Z, Hasan T, et al., 2011. Graphene Q-switched, tunable fiber laser. Appl Phys Lett, 98(7):073106.
[27]Popa D, Jiang Z, Bonacchini GE, et al., 2017. A stable, power scaling, graphene-mode-locked all-fiber oscillator. Appl Phys Lett, 110(24):243102.
[28]Sheng QW, Feng M, Xin W, et al., 2013. Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber. Opt Expr, 21(12):14859-14866.
[29]Shi Z, Cao R, Khan K, et al., 2020. Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett, 12:99.
[30]Smirnov SV, Kobtsev SM, Kukarin SV, 2014. Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser. Opt Expr, 22(1):1058-1064.
[31]Song YF, Li L, Zhang H, et al., 2013. Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Opt Expr, 21(8):10010-10018.
[32]Song YF, Chen S, Zhang Q, et al., 2016. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt Expr, 24(23):25933-25942.
[33]Soto-Crespo JM, Akhmediev N, Grelu P, et al., 2003. Quantized separations of phase-locked soliton pairs in fiber lasers. Opt Lett, 28(19):1757-1759.
[34]Tang PH, Qin ZP, Liu J, et al., 2015. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm. Opt Lett, 40(21):4855-4858.
[35]Tang PH, Wu M, Wang QK, et al., 2016. 2.8 μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator. IEEE Photon Technol Lett, 28(14):1573-1576.
[36]Tang YL, Yu XC, Li XH, et al., 2014. High-power thulium fiber laser Q switched with single-layer graphene. Opt Lett, 39(3):614-617.
[37]Wang ZH, Wang Z, Liu YG, et al., 2016. Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser. Opt Expr, 24(13):14709-14716.
[38]Woodward RI, Howe RCT, Hu G, et al., 2015. Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited]. Photon Res, 3(2):A30-A42.
[39]Yun L, 2017. Switchable dual-wavelength conventional soliton delivered from a graphene-mode-locked fiber laser. Optik, 145:549-554.
[40]Zaytsev A, Lin CH, You YJ, et al., 2013. Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers. Opt Expr, 21(13):16056-16062.
[41]Zeng C, Cui YD, Guo J, 2015. Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser. Opt Commun, 347:44-49.
[42]Zhang H, Tang DY, Zhao LM, et al., 2009. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt Expr, 17(20):17630-17635.
[43]Zhang H, Lu SB, Zheng J, et al., 2014. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt Expr, 22(6):7249-7260.
[44]Zhao CJ, Zhang H, Qi X, et al., 2012. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl Phys Lett, 101(21):211106.
Open peer comments: Debate/Discuss/Question/Opinion
<1>