CLC number: TN248.1
On-line Access: 2015-04-03
Received: 2015-02-15
Revision Accepted: 2015-03-09
Crosschecked: 2015-03-25
Cited: 2
Clicked: 3994
Citations: Bibtex RefMan EndNote GB/T7714
Sha Wang, Guo-ying Feng, Shou-huan Zhou. SESAM fabrication errors and its influence on ultrafast laser cavity design[J]. Journal of Zhejiang University Science A, 2015, 16(4): 326-334.
@article{title="SESAM fabrication errors and its influence on ultrafast laser cavity design",
author="Sha Wang, Guo-ying Feng, Shou-huan Zhou",
journal="Journal of Zhejiang University Science A",
volume="16",
number="4",
pages="326-334",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500030"
}
%0 Journal Article
%T SESAM fabrication errors and its influence on ultrafast laser cavity design
%A Sha Wang
%A Guo-ying Feng
%A Shou-huan Zhou
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 4
%P 326-334
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500030
TY - JOUR
T1 - SESAM fabrication errors and its influence on ultrafast laser cavity design
A1 - Sha Wang
A1 - Guo-ying Feng
A1 - Shou-huan Zhou
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 4
SP - 326
EP - 334
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500030
Abstract: During mode-locked ultrafast laser experiments, we find that semiconductor saturable absorber mirrors (SESAMs) from the same manufacturing process may, from batch to batch, show different working ranges: pure Q-switching, Q-switched mode-locking, and continuous wave (CW) mode-locking. This is because, in high-volume wafer-scale fabrication, there is typically an estimated 1% error for high-quality molecular beam epitaxy (MBE) growth, which introduces a variation in the parameters of an individual SESAM. In this paper, we will analyze how that 1% error in layer thickness influences the behaviour of SESAMs in three different structures: resonant SESAM, anti-resonant SESAM, and enhanced SESAM. Furthermore, the characteristics of the SESAM will affect the mode-locking dynamic behavior of ultrafast solid state lasers. In the worst case, a SESAM with a fabrication error may prevent the laser cavity from mode-locking. Proper laser cavity design can help to reduce the impact of SESAM fabrication errors on laser performance and maintain the laser in the CW mode-locking range.
SESAM was one of the most important attractive inventions and key component on generating ultrafast pulses, however people have been focusing on how to design, improve and optimize the SESAM to meet its application in both bulk crystals and fiber based mode-locking, few people work on the fabrication errors of SESAM that may affect the mode-locking falling into one of the categories: Q-Switching or Q-Switching mode-locking. Theoretically the authors simulate all parameters of three types of SESAM structures with thickness errors, and raise a criteria in cavity design to tolerate the manufacturing error impact.
[1]Honninger, C., Paschotta, R., Morier-Genoud, F., et al., 1999. Q-switching stability limits of continuous-wave passive mode-locking. Journal of the Optical Society of America B, 16(1):46-56.
[2]Kartner, F.X., Keller, U., 1995. Stabilization of soliton like pulses with a slow saturable absorber. Optics Letters, 20(1):16-18.
[3]Kartner, F.X., Brovelli, L.R., Kopf, D., et al., 1995. Control of solid state laser dynamics by semiconductor devices. Optical Engineering, 34(7):2024-2036.
[4]Kartner, F.X., Jung, I., Keller, U., 1996. Soliton mode-locking with saturable absorbers. IEEE Journal of Selected Topics in Quantum Electronics, 2(3):540-556.
[5]Keller, U., 1994. Ultrafast all-solid-state laser technology. Applied Physics B, 58(5):347-363.
[6]Keller, U., Miller, D.A.B., Boyd, G.D., et al., 1992. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber. Optics Letters, 17(7):505-507.
[7]Keller, U., Chiu, T.H., Ferguson, J.F., 1993. Self-starting femtosecond mode-locked Nd: glass laser using intracavity saturable absorbers. Optics Letters, 18(13):1077-1097.
[8]Keller, U., Weingarten, K.J., Franz, X., et al., 1996. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2(3):435-453.
[9]Kubecek, V., Dombrovsky, A., Biegert, J., et al., 2001. Mode-locking of flash lamp pumped Nd:YAP laser using solid state saturable absorbers. Proc. SPIE 4267, Solid State Lasers X, San Jose, CA, p.128-133.
[10]Malyarevich, A.M., Denisov, I.A., Yumashev, K.V., et al., 1998. V:YAG–a new passive Q-switch for diode-pumped solid-state lasers. Applied Physics B: Lasers and Optics, 67(5):555-558.
[11]Mollenauer, L.F., Stolen, R.H., 1984. The soliton laser. Optics Letters, 9(1):13-15.
[12]Rudin, B., Wittwer, V.J., Maas, D.J.H.C., et al., 2010. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power. Optics Express, 18(26):27582-27588.
[13]Saraceno, C.J., 2012. Cutting-edge High-power Ultrafast Oscillators: Pushing the Limits of SESAM Modelocked Thin-disk Lasers. PhD Thesis, Eidgenössische Technische Hochschule ETH Zürich.
[14]Spuhler, G.J., Weingarten, K.J., Grange, R., et al., 2005. Semiconductor saturable absorber mirror structures with low saturation fluence. Applied Physics B, 81(1):27-32.
[15]Sulc, J., Jelinkova, H., Nemec, M., et al., 2004. V:YAG saturable absorber for flash lamp and diode pumped solid state lasers. Proc. SPIE 5460, Solid State Lasers and Amplifiers, Strasbourg, France, p.292-302.
[16]Sullivan, B.T, Dobrowolski, J.A., 1992. Deposition errorcompensation for optical multilayer coatings. I. Theoretical description. Applied Optics, 31(19):3821-3835.
[17]Tikhonravov, A.V., Trubetskov, M.K., Amotchkina, T.V., et al., 2006. Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring. Applied Optics, 45(27):7026-7034.
Open peer comments: Debate/Discuss/Question/Opinion
<1>