Full Text:   <1394>

Summary:  <1198>

CLC number: TN923

On-line Access: 2021-04-15

Received: 2020-08-30

Revision Accepted: 2021-02-08

Crosschecked: 2021-03-03

Cited: 0

Clicked: 2430

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chao He

https://orcid.org/0000-0001-6747-9245

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.4 P.441-456

http://doi.org/10.1631/FITEE.2000440


Millimeter-wave wireless communications for home network in fiber-to-the-room scenario


Author(s):  Chao He, Zhixiong Ren, Xiang Wang, Yan Zeng, Jian Fang, Debin Hou, Le Kuai, Rong Lu, Shilin Yang, Zhe Chen, Jixin Chen

Affiliation(s):  Huawei Technologies Co. Ltd., Shenzhen 518129, China; more

Corresponding email(s):   charles.he@huawei.com, renzhixiong@huawei.com, eric.wangxiang@huawei.com, tony.zengyan@huawei.com, fangjian@srrc.org.cn, dbhou@seu.edu.cn, 230159362@seu.edu.cn, ronglu@seu.edu.cn, yang_shilinnudt@163.com, zhechen@seu.edu.cn, jxchen@seu.edu.cn

Key Words:  Fiber-to-the-room, Millimeter wave, Q-band, Cloud virtual reality (cloud VR), Home network, Beamforming, Radio frequency integrated circuit (RFIC)


Chao He, Zhixiong Ren, Xiang Wang, Yan Zeng, Jian Fang, Debin Hou, Le Kuai, Rong Lu, Shilin Yang, Zhe Chen, Jixin Chen. Millimeter-wave wireless communications for home network in fiber-to-the-room scenario[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 441-456.

@article{title="Millimeter-wave wireless communications for home network in fiber-to-the-room scenario",
author="Chao He, Zhixiong Ren, Xiang Wang, Yan Zeng, Jian Fang, Debin Hou, Le Kuai, Rong Lu, Shilin Yang, Zhe Chen, Jixin Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="441-456",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000440"
}

%0 Journal Article
%T Millimeter-wave wireless communications for home network in fiber-to-the-room scenario
%A Chao He
%A Zhixiong Ren
%A Xiang Wang
%A Yan Zeng
%A Jian Fang
%A Debin Hou
%A Le Kuai
%A Rong Lu
%A Shilin Yang
%A Zhe Chen
%A Jixin Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 441-456
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000440

TY - JOUR
T1 - Millimeter-wave wireless communications for home network in fiber-to-the-room scenario
A1 - Chao He
A1 - Zhixiong Ren
A1 - Xiang Wang
A1 - Yan Zeng
A1 - Jian Fang
A1 - Debin Hou
A1 - Le Kuai
A1 - Rong Lu
A1 - Shilin Yang
A1 - Zhe Chen
A1 - Jixin Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 441
EP - 456
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000440


Abstract: 
Millimeter-wave (mmWave) technology has been well studied for both outdoor long-distance transmission and indoor short-range communication. In the recently emerging fiber-to-the-room (FTTR) architecture in the home network of the fifth generation fixed networks (F5G), mmWave technology can be cascaded well to a new optical network terminal in the room to enable extremely high data rate communication (i.e., >10 Gb/s). In the FTTR+mmWave scenario, the rapid degradation of the mmWave signal in long-distance transmission and the significant loss against wall penetration are no longer the bottlenecks for real application. Moreover, the surrounding walls of every room provide excellent isolation to avoid interference and guarantee security. This paper provides insights and analysis for the new FTTR+mmWave architecture to improve the customer experience in future broadband services such as immersive audiovisual videos.

光纤到屋场景下的Q波段毫米波通信



关键词:贺超1,任志雄1,王祥1,曾焱1,方箭2,侯德彬3,蒯乐3
陆容3,杨仕林3,陈喆3,陈继新3
1华为技术有限公司,中国深圳市,518129
2国家无线电监测中心,中国北京市,100037
3东南大学毫米波国家重点实验室,中国南京市,210096

概要:毫米波技术无论在室外长距离通信还是室内短距离通信中都获得了广泛关注和深入研究。受限于高路损与穿墙损耗,毫米波室内覆盖是关键难点问题。近两年,随着第五代固定网络接入技术(Fifth generation fixed networks,F5G)的兴起并提出光纤到屋(fiber-to-the-room,FTTR)技术,无疑为解决毫米波室内覆盖提供了强有力手段。依赖于铺设到每个房间的光纤基础设施,FTTR为大通量毫米波通信创造了超大带宽的连接通道,使得毫米波可以全面高效覆盖每个房间。同时,毫米波频段的高穿墙损耗反而为消除跨房间无线通信系统间的干扰创造了有利条件,从而为大通量零干扰家庭无线接入建立基础。
为推广毫米波技术应用,中国无线电监管机构于2013年发布Q波段(42-48GHz)频谱用于室内无线接入,并由东南大学洪伟教授牵头制订Q-LINKPAN和IEEE 802.11aj通信标准。受益于单载波体制设计,该标准减少了对射频器件动态范围要求,降低了毫米波技术商用门槛。本文首先对近20年家庭接入技术进行回顾,包括非对称双绞线、电力线、同轴线和光纤接入技术,然后介绍了毫米波无线局域网技术,重点分析了Q波段毫米波通信物理层链路、Q波段毫米波射频芯片现状、毫米波天线设计,结合当前云虚拟现实(could virtual reality, cloud VR)等新应用讨论了产品化节奏,最后对Q波段毫米波样机和测试结果进行了介绍。文末对于FTTR新架构下的毫米波技术挑战进行了展望,对包括波束成形、漫游、高效率射频天线设计、精简协议与系统集成、标准化与非通信应用研究等将会是家用毫米波技术持续发展的重要课题。
IEEE 802.11aj标准主要支持单载波(single carrier, SC)与正交频分复用(OFDM)两种通信体制,通过引入单载波体制降低了信号峰均比进而降低对射频器件动态范围要求。通信模板最大支持64-QAM,在4条空间流情况下可以支持14 Gb/s的峰值速率。当前毫米波功放效率不高,为进一步对抗路损、高增益高效率的CMOS PA、全集成天线设计以及波束成形与跟踪等技术需要持续考虑。
Cloud VR类应用对于网络质量提出了更高要求,在2019年VR分级标准中,旗舰级VR需要端到端3 Gb/s以上带宽和5 ms以内的时延。为保证Cloud VR业务体验,欧洲电信标准化组织(ETSI)提出专门针对云VR的切片架构,由此成为家用毫米波通信的重要抓手。当前光接入网络正大范围从GPON向10G-PON迁移,为高带宽毫米波接入奠定了回传网络基础。
当工作在540 MHz和1080 MHz带宽下时,Q波段毫米波样机收发环回信噪比分别可达25 dB和20 dB,在16-QAM@1080MHz调制模板情况下可实现单流2 Gb/s通信速率,当工作在64-QAM时,通过4×4 MIMO最终可支持10 Gb/s以上速率。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ai B, Guan K, He RS, et al., 2017. On indoor millimeter wave massive MIMO channels: measurement and simulation. IEEE J Sel Areas Commun, 35(7):1678-1690.

[2]Akdeniz MR, Liu YP, Samimi MK, et al., 2014. Millimeter wave channel modeling and cellular capacity evaluation. IEEE J Sel Areas Commun, 32(6):1164-1179.

[3]Alexander M, Vinko E, Chris H, et al., 2010. Channel Models for 60 GHz WLAN Systems. No. 11-09-0334-08, IEEE 802.11.

[4]Alkhateeb A, El Ayach O, Leus G, et al., 2014. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process, 8(5):831-846.

[5]Chen JN, Li S, Tao JY, et al., 2020. Wireless beam modulation: an energy- and spectrum-efficient communication technology for future massive IoT systems. IEEE Wirel Commun, 27(5):60-66.

[6]Cui PF, Zhang JA, Lu WJ, et al., 2019. Statistical sparse channel modeling for measured and simulated wireless temporal channels. IEEE Trans Wirel Commun, 18(12):5868-5881.

[7]Deng W, Song Z, Ma RC, et al., 2020. An energy-efficient 10-Gb/s CMOS millimeter-wave transceiver with direct-modulation digital transmitter and I/Q phase-coupled frequency synthesizer. IEEE J Sol-State Circ, 55(8):2027-2042.

[8]El Ayach O, Rajagopal S, Abu-Surra S, et al., 2014. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun, 13(3):1499-1513.

[9]Emara MK, Tomura T, Hirokawa J, et al., 2021. All-dielectric Fabry-Pérot-based compound Huygens’ structure for millimeter-wave beamforming. IEEE Trans Antenn Propag, 69(1):273-285.

[10]ETSI, 2019. Terms of Reference (ToR) for ETSI ISG “5th Generation Fixed Network” (ISG F5G). European Tele-Communications Standards Institute, Nice, France.

[11]ETSI F5G Industrial Specification Group, 2021. Fifth Generation Fixed Network (F5G): F5G Use Cases Release. ETSI GR F5G-002.

[12]Gao L, Rebeiz GM, 2020. A 22–44-GHz phased-array receive beamformer in 45-nm CMOS SOI for 5G applications with 3–3.6-dB NF. IEEE Trans Microw Theory Techn, 68(11):4765-4774.

[13]Genc Z, Dang BL, Wang J, et al., 2008. Home networking at 60 GHz: challenges and research issues. Ann Telecommun, 63(9):501-509.

[14]Ghasempour Y, Da Silva CRCM, Cordeiro C, et al., 2017. IEEE 802.11ay: next-generation 60 GHz communication for 100 Gb/s Wi-Fi. IEEE Commun Mag, 55(12):186-192.

[15]Ghosh S, Sen D, 2019. An inclusive survey on array antenna design for millimeter-wave communications. IEEE Access, 7:83137-83161.

[16]Guillory J, Tanguy E, Pizzinat A, et al., 2011. A 60 GHz wireless home area network with radio over fiber repeaters. J Lightw Technol, 29(16):2482-2488.

[17]He SW, Huang YM, Wang HM, et al., 2017. Development trend and technological challenges of millimeter-wave wireless communication. Telecommun Sci, 33(6):11-20 (in Chinese).

[18]Hemadeh IA, Satyanarayana K, El-Hajjar M, et al., 2017. Millimeter-wave communications: physical channel models, design considerations, antenna constructions, and link-budget. IEEE Commun Surv Tutor, 20(2):870-913.

[19]Hirata A, Kosugi T, Takahashi H, et al., 2006. 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission. IEEE Trans Microw Theory Techn, 54(5):1937-1944.

[20]Hur S, Kim T, Love DJ, et al., 2013. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 61(10):4391-4403.

[21]Hussain N, Jeong MJ, Abbas A, et al., 2020. A metasurface-based low-profile wideband circularly polarized patch antenna for 5G millimeter-wave systems. IEEE Access, 8:22127-22135.

[22]IEEE, 2008a. IEEE Standard for Information Technology― Local and Metropolitan Area Networks―Specific Requirements―Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Radio Resource Measurement of Wireless LANs, IEEE 802.11k-2008. National Standards of the United States of America.

[23]IEEE, 2008b. IEEE Standard for Information Technology― Local and Metropolitan Area Networks―Specific Requirements―Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Fast Basic Service Set (BSS) Transition, 802.11r-2008. National Standards of the United States of America.

[24]IEEE, 2009. IEEE Standard for Information Technology― Local and Metropolitan Area Networks―Specific Requirements―Part 15.3: Amendment 2: Millimeter-Wave-Based Alternative Physical Layer Extension, 802.15.3c-2009. National Standards of the United States of America.

[25]IEEE, 2010. Citing Electronic Sources of Information. https://mentor.ieee.org/802.11/dcn/09/11-09-0334-08-00ad-channel-models-for-60-ghz-wlan-systems.doc

[26]IEEE, 2011. IEEE Standard for Information Technology― Local and Metropolitan Area Networks―Specific Requirements―Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 8: IEEE 802.11 Wireless Network Management, 802.11v-2011. National Standards of the United States of America.

[27]IEEE, 2012. IEEE Standard for Information Technology― Telecommunications and Information Exchange Between Systems―Local and Metropolitan Area Networks― Specific Requirements―Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, 802.11ad-2012. National Standards of the United States of America.

[28]IEEE, 2018. IEEE Standard for Information Technology― Telecommunications and Information Exchange Between Systems―Local and Metropolitan Area Networks― Specific Requirements―Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput to Support Chinese Millimeter Wave Frequency Bands (60 GHz and 45 GHz), 802.11aj-2018. National Standards of the United States of America.

[29]ITU-T, 1999. Asymmetric Digital Subscriber Line (ADSL) Transceivers. ITU-T G.992.1, International Telecommunication Union, Geneva.

[30]ITU-T, 2008. Gigabit-Capable Passive Optical Networks (GPON): General Characteristics. ITU-T G.984.1, International Telecommunication Union, Geneva.

[31]ITU-T, 2009. Unified High-Speed Wireline-Based Home Networking Transceivers―System Architecture and Physical Layer Specification. ITU-T G.9960, International Telecommunication Union, Geneva.

[32]ITU-T, 2016. 10-Gigabit-Capable Passive Optical Networks (XG-PON): General Requirements. ITU-T G.987.1, International Telecommunication Union, Geneva.

[33]ITU-T, 2019a. Fast Access to Subscriber Terminals (G.fast)― Physical Layer Specification. ITU-T G.9701, International Telecommunication Union, Geneva.

[34]ITU-T, 2019b. Higher Speed Passive Optical Networks― Requirements. ITU-T G.9804.1, International Telecommunication Union, Geneva.

[35]ITU-T, 2019c. Very High Speed Digital Subscriber Line Transceivers 2 (VDSL2). ITU-T G.993.2, International Telecommunication Union, Geneva.

[36]ITU-T, 2020a. Multi-Gigabit Fast Access to Subscriber Terminals (MGfast)―Power Spectral Density Specification. ITU-T G.9710, International Telecommunication Union, Geneva.

[37]ITU-T, 2020b. SG15-TD465R1/PLEN, WP1/15 Meeting Report. International Telecommunication Union, Geneva.

[38]ITU-T, 2020c. SG15-TD468/WP1, G.9960-2 (G.hn Evolution): Draft Text. International Telecommunication Union, Geneva.

[39]Jiang ZH, Kang L, Yue TW, et al., 2020. Wideband transmit arrays based on anisotropic impedance surfaces for circularly polarized single-feed multibeam generation in the Q-band. IEEE Trans Antenn Propag, 68(1):217-229.

[40]Karim R, Iftikhar A, Ijaz B, et al., 2019. The potentials, challenges, and future directions of on-chip-antennas for emerging wireless applications―a comprehensive survey. IEEE Access, 7:173897-173934.

[41]Kelly N, Cao WH, Zhu AD, 2017. Preparing linearity and efficiency for 5G: digital predistortion for dual-band Doherty power amplifiers with mixed-mode carrier aggregation. IEEE Microw Mag, 18(1):76-84.

[42]Kim C, Kim T, Seol JY, 2013. Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems. Proc IEEE Globecom Workshops, p.61-65.

[43]Kutty S, Sen D, 2016. Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun Surv Tutor, 18(2):949-973.

[44]Kwon G, Shim Y, Park H, et al., 2014. Design of millimeter wave hybrid beamforming systems. Proc IEEE 80th Vehicular Technology Conf, p.1-5.

[45]Li CF, Zhu XW, Liu PF, et al., 2019. A metasurface-based multilayer wideband circularly polarized patch antenna array with a parallel feeding network for Q-band. IEEE Antenn Wirel Propag Lett, 18(6):1208-1212.

[46]Li HT, Zhu XW, Zhong NY, et al., 2019. A 20MHz supply modulator designed for envelope tracking power amplifier at 42GHz. Proc Int Conf on Microwave and Millimeter Wave Technology, p.1-3.

[47]Lin T, Cong JQ, Zhu Y, et al., 2019. Hybrid beamforming for millimeter wave systems using the MMSE criterion. IEEE Trans Commun, 67(5):3693-3708.

[48]Liu PF, Zhu XW, Jiang ZH, et al., 2019. A compact single-layer Q-band tapered slot antenna array with phase-shifting inductive windows for endfire patterns. IEEE Trans Antenn Propag, 67(1):169-178.

[49]Marcus M, Pattan B, 2005. Millimeter wave propagation: spectrum management implications. IEEE Microw Mag, 6(2):54-62.

[50]MIIT, 2013. The Usage of 40–50 GHz Frequency Band for Mobile Services in Broadband Wireless Access Systems.

[51]Moraitis N, Constantinou P, 2004. Indoor channel measurements and characterization at 60 GHz for wireless local area network applications. IEEE Trans Antenn Propag, 52(12):3180-3189.

[52]Mubarak ASA, Mohamed EM, Esmaiel H, 2016. Millimeter wave beamforming training, discovery and association using WiFi positioning in outdoor urban environment. Proc 28th Int Conf on Microelectronics, p.221-224.

[53]Noh S, Zoltowski MD, Love DJ, 2017. Multi-resolution codebook and adaptive beamforming sequence design for millimeter wave beam alignment. IEEE Trans Wirel Commun, 16(9):5689-5701.

[54]Okada K, 2019. Millimeter-wave phased-array transceiver using CMOS technology. Proc IEEE Asia-Pacific Microwave Conf, p.729-731.

[55]Palacios J, de Donno D, Widmer J, 2017. Tracking mm-Wave channel dynamics: fast beam training strategies under mobility. Proc IEEE Conf on Computer Communications, p.1-9.

[56]Pang J, Li Z, Kubozoe R, et al., 2020. A 28-GHz CMOS phased-array beamformer utilizing neutralized bi-directional technique supporting dual-polarized MIMO for 5G NR. IEEE J Sol-State Circ, 55(9):2371-2386.

[57]Perović NS, di Renzo M, Flanagan MF, 2020. Channel capacity optimization using reconfigurable intelligent surfaces in indoor mmWave environments. Proc IEEE Int Conf on Communications, p.1-7.

[58]Rangan S, Rappaport TS, Erkip E, 2014. Millimeter-wave cellular wireless networks: potentials and challenges. Proc IEEE, 102(3):366-385.

[59]Ranjan R, Ghosh J, 2019. SIW-based leaky-wave antenna supporting wide range of beam scanning through broadside. IEEE Antenn Wirel Propag Lett, 18(4):606-610.

[60]Rodríguez-Fernández J, González-Prelcic N, Venugopal K, et al., 2018. Frequency-domain compressive channel estimation for frequency-selective hybrid millimeter wave MIMO systems. IEEE Trans Wirel Commun, 17(5):2946-2960.

[61]Rüddenklau U, Geen M, Andrea P, et al., 2018. mmWave Semiconductor Industry Technologies: Status and Evolution. ETSI White Paper No. 15, ETSI, p.1-53. https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp15ed2_mmWave-Semiconductor_Technologies_FINAL.pdf

[62]Sarkar A, Floyd BA, 2017. A 28-GHz harmonic-tuned power amplifier in 130-nm SiGe BiCMOS. IEEE Trans Microw Theory Techn, 65(2):522-535.

[63]Sato K, Manabe T, Ihara T, et al., 1997. Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band. IEEE Trans Antenn Propag, 45(12):1783-1792.

[64]Shahramian S, Holyoak MJ, Singh A, et al., 2019. A fully integrated 384-element, 16-tile, W-band phased array with self-alignment and self-test. IEEE J Sol-State Circ, 54(9):2419-2434.

[65]Sohrabi F, Yu W, 2016. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 10(3):501-513.

[66]Sun S, Rappaport TS, Heath RW, et al., 2014. MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun Mag, 52(12):110-121.

[67]Tao JY, Chen JN, Xing J, et al., 2020. Autoencoder neural network based intelligent hybrid beamforming design for mmWave massive MIMO systems. IEEE Trans Cogn Commun Netw, 6(3):1019-1030.

[68]Thakkar C, Chakrabarti A, Yamada S, et al., 2019. A 42.2-Gb/s 4.3-pJ/b 60-GHz digital transmitter with 12-b/symbol polarization MIMO. IEEE J Sol-State Circ, 54(12):3565-3576.

[69]Tsang YM, Poon ASY, Addepalli S, 2011. Coding the beams: improving beamforming training in mmWave communication system. Proc IEEE Global Telecommunications Conf, p.1-6.

[70]Vigilante M, Reynaert P, 2017. A 29-to-57GHz AM-PM compensated class-AB power amplifier for 5G phased arrays in 0.9V 28nm bulk CMOS. Proc IEEE Radio Frequency Integrated Circuits Symp, p.116-119.

[71]Wang H, 2015. Radio Channel Measurements and Modeling for Indoor Millimeter-Wave Communications at 45 GHz. PhD Thesis, The Chinese University of Hong Kong, Hong Kong, China.

[72]Wang H, Wang F, Li TW, 2019. Broadband, linear, and high-efficiency mm-Wave PAs in silicon―overcoming device limitations by architecture/circuit innovations. Proc IEEE MTT-S Int Microwave Symp, p.1122-1125.

[73]Wang H, Wang F, Li S, et al., 2020. Power Amplifiers Performance Survey 2000-Present. https://gems.ece.gatech.edu/PA_survey.html

[74]Wang JY, Lan Z, Pyo CW, et al., 2009. Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE J Sel Areas Commun, 27(8):1390-1399.

[75]Weiß M, Huchard M, Stohr A, et al., 2008. 60-GHz photonic millimeter-wave link for short- to medium-range wireless transmission up to 12.5 Gb/s. J Lightw Technol, 26(15):2424-2429.

[76]Wu XY, Wang CX, Sun J, et al., 2017. 60-GHz millimeter-wave channel measurements and modeling for indoor office environments. IEEE Trans Antenn Propag, 65(4):1912-1924.

[77]Xu J, Hong W, Jiang ZH, et al., 2017. A Q-band low-profile dual circularly polarized array antenna incorporating linearly polarized substrate integrated waveguide-fed patch subarrays. IEEE Trans Antenn Propag, 65(10):5200-5210.

[78]Yu C, Lu QY, Yin H, et al., 2020. Linear-decomposition digital predistortion of power amplifiers for 5G ultrabroadband applications. IEEE Trans Microw Theory Techn, 68(7):2833-2844.

[79]Yu SH, Hong W, Zhang Y, 2016. Packaged ultrabroadband terminal antenna for 45 GHz band IEEE 802.11aj applications. IEEE Trans Antenn Propag, 64(12):5153-5162.

[80]Yu XH, Shen JC, Zhang J, et al., 2016. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10(3):485-500.

[81]Yu YK, Baltus PGM, van Roermund AHM, 2011. Integrated 60GHz RF Beamforming in CMOS. Springer, Dordrecht, USA.

[82]Zhang T, Zhang Y, Cao LN, et al., 2015. Single-layer wideband circularly polarized patch antennas for Q-band applications. IEEE Trans Antenn Propag, 63(1):409-414.

[83]Zhang XZ, Li F, Yang HL, et al., 2019. Cloud VR Solution Sales White Paper. Huawei Technologies Co., Ltd., issue 1.0.

[84]Zhang Y, Xue ZL, Hong W, et al., 2017. Planar substrate-integrated endfire antenna with wide beamwidth for Q-band applications. IEEE Antenn Wirel Propag Lett, 16:1990-1993.

[85]Zhang Y, Hong W, Mittra R, 2019. 45 GHz wideband circularly polarized planar antenna array using inclined slots in modified short-circuited SIW. IEEE Trans Antenn Propag, 67(3):1669-1680.

[86]Zhang YP, Mao JF, 2019. An overview of the development of antenna-in-package technology for highly integrated wireless devices. Proc IEEE, 107(11):2265-2280.

[87]Zhou P, Cheng KJ, Han X, et al., 2018. IEEE 802.11ay-based mmWave WLANs: design challenges and solutions. IEEE Commun Surv Tutor, 20(3):1654-1681.

[88]Zhu DK, Li BY, Liang P, 2017. A novel hybrid beamforming algorithm with unified analog beamforming by subspace construction based on partial CSI for massive MIMO-OFDM systems. IEEE Trans Commun, 65(2):594-607.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE