CLC number: TN923
On-line Access: 2021-04-15
Received: 2020-08-30
Revision Accepted: 2021-02-08
Crosschecked: 2021-03-03
Cited: 0
Clicked: 5471
Chao He, Zhixiong Ren, Xiang Wang, Yan Zeng, Jian Fang, Debin Hou, Le Kuai, Rong Lu, Shilin Yang, Zhe Chen, Jixin Chen. Millimeter-wave wireless communications for home network in fiber-to-the-room scenario[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 441-456.
@article{title="Millimeter-wave wireless communications for home network in fiber-to-the-room scenario",
author="Chao He, Zhixiong Ren, Xiang Wang, Yan Zeng, Jian Fang, Debin Hou, Le Kuai, Rong Lu, Shilin Yang, Zhe Chen, Jixin Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="441-456",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000440"
}
%0 Journal Article
%T Millimeter-wave wireless communications for home network in fiber-to-the-room scenario
%A Chao He
%A Zhixiong Ren
%A Xiang Wang
%A Yan Zeng
%A Jian Fang
%A Debin Hou
%A Le Kuai
%A Rong Lu
%A Shilin Yang
%A Zhe Chen
%A Jixin Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 441-456
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000440
TY - JOUR
T1 - Millimeter-wave wireless communications for home network in fiber-to-the-room scenario
A1 - Chao He
A1 - Zhixiong Ren
A1 - Xiang Wang
A1 - Yan Zeng
A1 - Jian Fang
A1 - Debin Hou
A1 - Le Kuai
A1 - Rong Lu
A1 - Shilin Yang
A1 - Zhe Chen
A1 - Jixin Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 441
EP - 456
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000440
Abstract: Millimeter-wave (mmWave) technology has been well studied for both outdoor long-distance transmission and indoor short-range communication. In the recently emerging fiber-to-the-room (FTTR) architecture in the home network of the fifth generation fixed networks (F5G), mmWave technology can be cascaded well to a new optical network terminal in the room to enable extremely high data rate communication (i.e., >10 Gb/s). In the FTTR+mmWave scenario, the rapid degradation of the mmWave signal in long-distance transmission and the significant loss against wall penetration are no longer the bottlenecks for real application. Moreover, the surrounding walls of every room provide excellent isolation to avoid interference and guarantee security. This paper provides insights and analysis for the new FTTR+mmWave architecture to improve the customer experience in future broadband services such as immersive audiovisual videos.
[1]Ai B, Guan K, He RS, et al., 2017. On indoor millimeter wave massive MIMO channels: measurement and simulation. IEEE J Sel Areas Commun, 35(7):1678-1690.
[2]Akdeniz MR, Liu YP, Samimi MK, et al., 2014. Millimeter wave channel modeling and cellular capacity evaluation. IEEE J Sel Areas Commun, 32(6):1164-1179.
[3]Alexander M, Vinko E, Chris H, et al., 2010. Channel Models for 60 GHz WLAN Systems. No. 11-09-0334-08, IEEE 802.11.
[4]Alkhateeb A, El Ayach O, Leus G, et al., 2014. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process, 8(5):831-846.
[5]Chen JN, Li S, Tao JY, et al., 2020. Wireless beam modulation: an energy- and spectrum-efficient communication technology for future massive IoT systems. IEEE Wirel Commun, 27(5):60-66.
[6]Cui PF, Zhang JA, Lu WJ, et al., 2019. Statistical sparse channel modeling for measured and simulated wireless temporal channels. IEEE Trans Wirel Commun, 18(12):5868-5881.
[7]Deng W, Song Z, Ma RC, et al., 2020. An energy-efficient 10-Gb/s CMOS millimeter-wave transceiver with direct-modulation digital transmitter and I/Q phase-coupled frequency synthesizer. IEEE J Sol-State Circ, 55(8):2027-2042.
[8]El Ayach O, Rajagopal S, Abu-Surra S, et al., 2014. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun, 13(3):1499-1513.
[9]Emara MK, Tomura T, Hirokawa J, et al., 2021. All-dielectric Fabry-Pérot-based compound Huygens’ structure for millimeter-wave beamforming. IEEE Trans Antenn Propag, 69(1):273-285.
[10]ETSI, 2019. Terms of Reference (ToR) for ETSI ISG “5th Generation Fixed Network” (ISG F5G). European Tele-Communications Standards Institute, Nice, France.
[11]ETSI F5G Industrial Specification Group, 2021. Fifth Generation Fixed Network (F5G): F5G Use Cases Release. ETSI GR F5G-002.
[12]Gao L, Rebeiz GM, 2020. A 22–44-GHz phased-array receive beamformer in 45-nm CMOS SOI for 5G applications with 3–3.6-dB NF. IEEE Trans Microw Theory Techn, 68(11):4765-4774.
[13]Genc Z, Dang BL, Wang J, et al., 2008. Home networking at 60 GHz: challenges and research issues. Ann Telecommun, 63(9):501-509.
[14]Ghasempour Y, Da Silva CRCM, Cordeiro C, et al., 2017. IEEE 802.11ay: next-generation 60 GHz communication for 100 Gb/s Wi-Fi. IEEE Commun Mag, 55(12):186-192.
[15]Ghosh S, Sen D, 2019. An inclusive survey on array antenna design for millimeter-wave communications. IEEE Access, 7:83137-83161.
[16]Guillory J, Tanguy E, Pizzinat A, et al., 2011. A 60 GHz wireless home area network with radio over fiber repeaters. J Lightw Technol, 29(16):2482-2488.
[17]He SW, Huang YM, Wang HM, et al., 2017. Development trend and technological challenges of millimeter-wave wireless communication. Telecommun Sci, 33(6):11-20 (in Chinese).
[18]Hemadeh IA, Satyanarayana K, El-Hajjar M, et al., 2017. Millimeter-wave communications: physical channel models, design considerations, antenna constructions, and link-budget. IEEE Commun Surv Tutor, 20(2):870-913.
[19]Hirata A, Kosugi T, Takahashi H, et al., 2006. 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission. IEEE Trans Microw Theory Techn, 54(5):1937-1944.
[20]Hur S, Kim T, Love DJ, et al., 2013. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 61(10):4391-4403.
[21]Hussain N, Jeong MJ, Abbas A, et al., 2020. A metasurface-based low-profile wideband circularly polarized patch antenna for 5G millimeter-wave systems. IEEE Access, 8:22127-22135.
[22]IEEE, 2008a. IEEE Standard for Information Technology― Local and Metropolitan Area Networks―Specific Requirements―Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Radio Resource Measurement of Wireless LANs, IEEE 802.11k-2008. National Standards of the United States of America.
[23]IEEE, 2008b. IEEE Standard for Information Technology― Local and Metropolitan Area Networks―Specific Requirements―Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Fast Basic Service Set (BSS) Transition, 802.11r-2008. National Standards of the United States of America.
[24]IEEE, 2009. IEEE Standard for Information Technology― Local and Metropolitan Area Networks―Specific Requirements―Part 15.3: Amendment 2: Millimeter-Wave-Based Alternative Physical Layer Extension, 802.15.3c-2009. National Standards of the United States of America.
[25]IEEE, 2010. Citing Electronic Sources of Information. https://mentor.ieee.org/802.11/dcn/09/11-09-0334-08-00ad-channel-models-for-60-ghz-wlan-systems.doc
[26]IEEE, 2011. IEEE Standard for Information Technology― Local and Metropolitan Area Networks―Specific Requirements―Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 8: IEEE 802.11 Wireless Network Management, 802.11v-2011. National Standards of the United States of America.
[27]IEEE, 2012. IEEE Standard for Information Technology― Telecommunications and Information Exchange Between Systems―Local and Metropolitan Area Networks― Specific Requirements―Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, 802.11ad-2012. National Standards of the United States of America.
[28]IEEE, 2018. IEEE Standard for Information Technology― Telecommunications and Information Exchange Between Systems―Local and Metropolitan Area Networks― Specific Requirements―Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput to Support Chinese Millimeter Wave Frequency Bands (60 GHz and 45 GHz), 802.11aj-2018. National Standards of the United States of America.
[29]ITU-T, 1999. Asymmetric Digital Subscriber Line (ADSL) Transceivers. ITU-T G.992.1, International Telecommunication Union, Geneva.
[30]ITU-T, 2008. Gigabit-Capable Passive Optical Networks (GPON): General Characteristics. ITU-T G.984.1, International Telecommunication Union, Geneva.
[31]ITU-T, 2009. Unified High-Speed Wireline-Based Home Networking Transceivers―System Architecture and Physical Layer Specification. ITU-T G.9960, International Telecommunication Union, Geneva.
[32]ITU-T, 2016. 10-Gigabit-Capable Passive Optical Networks (XG-PON): General Requirements. ITU-T G.987.1, International Telecommunication Union, Geneva.
[33]ITU-T, 2019a. Fast Access to Subscriber Terminals (G.fast)― Physical Layer Specification. ITU-T G.9701, International Telecommunication Union, Geneva.
[34]ITU-T, 2019b. Higher Speed Passive Optical Networks― Requirements. ITU-T G.9804.1, International Telecommunication Union, Geneva.
[35]ITU-T, 2019c. Very High Speed Digital Subscriber Line Transceivers 2 (VDSL2). ITU-T G.993.2, International Telecommunication Union, Geneva.
[36]ITU-T, 2020a. Multi-Gigabit Fast Access to Subscriber Terminals (MGfast)―Power Spectral Density Specification. ITU-T G.9710, International Telecommunication Union, Geneva.
[37]ITU-T, 2020b. SG15-TD465R1/PLEN, WP1/15 Meeting Report. International Telecommunication Union, Geneva.
[38]ITU-T, 2020c. SG15-TD468/WP1, G.9960-2 (G.hn Evolution): Draft Text. International Telecommunication Union, Geneva.
[39]Jiang ZH, Kang L, Yue TW, et al., 2020. Wideband transmit arrays based on anisotropic impedance surfaces for circularly polarized single-feed multibeam generation in the Q-band. IEEE Trans Antenn Propag, 68(1):217-229.
[40]Karim R, Iftikhar A, Ijaz B, et al., 2019. The potentials, challenges, and future directions of on-chip-antennas for emerging wireless applications―a comprehensive survey. IEEE Access, 7:173897-173934.
[41]Kelly N, Cao WH, Zhu AD, 2017. Preparing linearity and efficiency for 5G: digital predistortion for dual-band Doherty power amplifiers with mixed-mode carrier aggregation. IEEE Microw Mag, 18(1):76-84.
[42]Kim C, Kim T, Seol JY, 2013. Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems. Proc IEEE Globecom Workshops, p.61-65.
[43]Kutty S, Sen D, 2016. Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun Surv Tutor, 18(2):949-973.
[44]Kwon G, Shim Y, Park H, et al., 2014. Design of millimeter wave hybrid beamforming systems. Proc IEEE 80th Vehicular Technology Conf, p.1-5.
[45]Li CF, Zhu XW, Liu PF, et al., 2019. A metasurface-based multilayer wideband circularly polarized patch antenna array with a parallel feeding network for Q-band. IEEE Antenn Wirel Propag Lett, 18(6):1208-1212.
[46]Li HT, Zhu XW, Zhong NY, et al., 2019. A 20MHz supply modulator designed for envelope tracking power amplifier at 42GHz. Proc Int Conf on Microwave and Millimeter Wave Technology, p.1-3.
[47]Lin T, Cong JQ, Zhu Y, et al., 2019. Hybrid beamforming for millimeter wave systems using the MMSE criterion. IEEE Trans Commun, 67(5):3693-3708.
[48]Liu PF, Zhu XW, Jiang ZH, et al., 2019. A compact single-layer Q-band tapered slot antenna array with phase-shifting inductive windows for endfire patterns. IEEE Trans Antenn Propag, 67(1):169-178.
[49]Marcus M, Pattan B, 2005. Millimeter wave propagation: spectrum management implications. IEEE Microw Mag, 6(2):54-62.
[50]MIIT, 2013. The Usage of 40–50 GHz Frequency Band for Mobile Services in Broadband Wireless Access Systems.
[51]Moraitis N, Constantinou P, 2004. Indoor channel measurements and characterization at 60 GHz for wireless local area network applications. IEEE Trans Antenn Propag, 52(12):3180-3189.
[52]Mubarak ASA, Mohamed EM, Esmaiel H, 2016. Millimeter wave beamforming training, discovery and association using WiFi positioning in outdoor urban environment. Proc 28th Int Conf on Microelectronics, p.221-224.
[53]Noh S, Zoltowski MD, Love DJ, 2017. Multi-resolution codebook and adaptive beamforming sequence design for millimeter wave beam alignment. IEEE Trans Wirel Commun, 16(9):5689-5701.
[54]Okada K, 2019. Millimeter-wave phased-array transceiver using CMOS technology. Proc IEEE Asia-Pacific Microwave Conf, p.729-731.
[55]Palacios J, de Donno D, Widmer J, 2017. Tracking mm-Wave channel dynamics: fast beam training strategies under mobility. Proc IEEE Conf on Computer Communications, p.1-9.
[56]Pang J, Li Z, Kubozoe R, et al., 2020. A 28-GHz CMOS phased-array beamformer utilizing neutralized bi-directional technique supporting dual-polarized MIMO for 5G NR. IEEE J Sol-State Circ, 55(9):2371-2386.
[57]Perović NS, di Renzo M, Flanagan MF, 2020. Channel capacity optimization using reconfigurable intelligent surfaces in indoor mmWave environments. Proc IEEE Int Conf on Communications, p.1-7.
[58]Rangan S, Rappaport TS, Erkip E, 2014. Millimeter-wave cellular wireless networks: potentials and challenges. Proc IEEE, 102(3):366-385.
[59]Ranjan R, Ghosh J, 2019. SIW-based leaky-wave antenna supporting wide range of beam scanning through broadside. IEEE Antenn Wirel Propag Lett, 18(4):606-610.
[60]Rodríguez-Fernández J, González-Prelcic N, Venugopal K, et al., 2018. Frequency-domain compressive channel estimation for frequency-selective hybrid millimeter wave MIMO systems. IEEE Trans Wirel Commun, 17(5):2946-2960.
[61]Rüddenklau U, Geen M, Andrea P, et al., 2018. mmWave Semiconductor Industry Technologies: Status and Evolution. ETSI White Paper No. 15, ETSI, p.1-53. https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp15ed2_mmWave-Semiconductor_Technologies_FINAL.pdf
[62]Sarkar A, Floyd BA, 2017. A 28-GHz harmonic-tuned power amplifier in 130-nm SiGe BiCMOS. IEEE Trans Microw Theory Techn, 65(2):522-535.
[63]Sato K, Manabe T, Ihara T, et al., 1997. Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band. IEEE Trans Antenn Propag, 45(12):1783-1792.
[64]Shahramian S, Holyoak MJ, Singh A, et al., 2019. A fully integrated 384-element, 16-tile, W-band phased array with self-alignment and self-test. IEEE J Sol-State Circ, 54(9):2419-2434.
[65]Sohrabi F, Yu W, 2016. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 10(3):501-513.
[66]Sun S, Rappaport TS, Heath RW, et al., 2014. MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun Mag, 52(12):110-121.
[67]Tao JY, Chen JN, Xing J, et al., 2020. Autoencoder neural network based intelligent hybrid beamforming design for mmWave massive MIMO systems. IEEE Trans Cogn Commun Netw, 6(3):1019-1030.
[68]Thakkar C, Chakrabarti A, Yamada S, et al., 2019. A 42.2-Gb/s 4.3-pJ/b 60-GHz digital transmitter with 12-b/symbol polarization MIMO. IEEE J Sol-State Circ, 54(12):3565-3576.
[69]Tsang YM, Poon ASY, Addepalli S, 2011. Coding the beams: improving beamforming training in mmWave communication system. Proc IEEE Global Telecommunications Conf, p.1-6.
[70]Vigilante M, Reynaert P, 2017. A 29-to-57GHz AM-PM compensated class-AB power amplifier for 5G phased arrays in 0.9V 28nm bulk CMOS. Proc IEEE Radio Frequency Integrated Circuits Symp, p.116-119.
[71]Wang H, 2015. Radio Channel Measurements and Modeling for Indoor Millimeter-Wave Communications at 45 GHz. PhD Thesis, The Chinese University of Hong Kong, Hong Kong, China.
[72]Wang H, Wang F, Li TW, 2019. Broadband, linear, and high-efficiency mm-Wave PAs in silicon―overcoming device limitations by architecture/circuit innovations. Proc IEEE MTT-S Int Microwave Symp, p.1122-1125.
[73]Wang H, Wang F, Li S, et al., 2020. Power Amplifiers Performance Survey 2000-Present. https://gems.ece.gatech.edu/PA_survey.html
[74]Wang JY, Lan Z, Pyo CW, et al., 2009. Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE J Sel Areas Commun, 27(8):1390-1399.
[75]Weiß M, Huchard M, Stohr A, et al., 2008. 60-GHz photonic millimeter-wave link for short- to medium-range wireless transmission up to 12.5 Gb/s. J Lightw Technol, 26(15):2424-2429.
[76]Wu XY, Wang CX, Sun J, et al., 2017. 60-GHz millimeter-wave channel measurements and modeling for indoor office environments. IEEE Trans Antenn Propag, 65(4):1912-1924.
[77]Xu J, Hong W, Jiang ZH, et al., 2017. A Q-band low-profile dual circularly polarized array antenna incorporating linearly polarized substrate integrated waveguide-fed patch subarrays. IEEE Trans Antenn Propag, 65(10):5200-5210.
[78]Yu C, Lu QY, Yin H, et al., 2020. Linear-decomposition digital predistortion of power amplifiers for 5G ultrabroadband applications. IEEE Trans Microw Theory Techn, 68(7):2833-2844.
[79]Yu SH, Hong W, Zhang Y, 2016. Packaged ultrabroadband terminal antenna for 45 GHz band IEEE 802.11aj applications. IEEE Trans Antenn Propag, 64(12):5153-5162.
[80]Yu XH, Shen JC, Zhang J, et al., 2016. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10(3):485-500.
[81]Yu YK, Baltus PGM, van Roermund AHM, 2011. Integrated 60GHz RF Beamforming in CMOS. Springer, Dordrecht, USA.
[82]Zhang T, Zhang Y, Cao LN, et al., 2015. Single-layer wideband circularly polarized patch antennas for Q-band applications. IEEE Trans Antenn Propag, 63(1):409-414.
[83]Zhang XZ, Li F, Yang HL, et al., 2019. Cloud VR Solution Sales White Paper. Huawei Technologies Co., Ltd., issue 1.0.
[84]Zhang Y, Xue ZL, Hong W, et al., 2017. Planar substrate-integrated endfire antenna with wide beamwidth for Q-band applications. IEEE Antenn Wirel Propag Lett, 16:1990-1993.
[85]Zhang Y, Hong W, Mittra R, 2019. 45 GHz wideband circularly polarized planar antenna array using inclined slots in modified short-circuited SIW. IEEE Trans Antenn Propag, 67(3):1669-1680.
[86]Zhang YP, Mao JF, 2019. An overview of the development of antenna-in-package technology for highly integrated wireless devices. Proc IEEE, 107(11):2265-2280.
[87]Zhou P, Cheng KJ, Han X, et al., 2018. IEEE 802.11ay-based mmWave WLANs: design challenges and solutions. IEEE Commun Surv Tutor, 20(3):1654-1681.
[88]Zhu DK, Li BY, Liang P, 2017. A novel hybrid beamforming algorithm with unified analog beamforming by subspace construction based on partial CSI for massive MIMO-OFDM systems. IEEE Trans Commun, 65(2):594-607.
Open peer comments: Debate/Discuss/Question/Opinion
<1>