Full Text:   <1153>

Summary:  <1166>

CLC number: TN929.5

On-line Access: 2021-04-15

Received: 2020-09-23

Revision Accepted: 2021-01-06

Crosschecked: 2021-03-03

Cited: 0

Clicked: 3356

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Peize Zhang

https://orcid.org/0000-0002-2944-5973

Haiming Wang

https://orcid.org/0000-0002-6156-258X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.4 P.471-487

http://doi.org/10.1631/FITEE.2000489


Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments


Author(s):  Peize Zhang, Haiming Wang, Wei Hong

Affiliation(s):  State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   pzzhang@seu.edu.cn, hmwang@seu.edu.cn, weihong@seu.edu.cn

Key Words:  Millimeter-wave communication, Clustering, Diffraction, Multipath channels, Propagation measurement


Peize Zhang, Haiming Wang, Wei Hong. Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 471-487.

@article{title="Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments",
author="Peize Zhang, Haiming Wang, Wei Hong",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="471-487",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000489"
}

%0 Journal Article
%T Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments
%A Peize Zhang
%A Haiming Wang
%A Wei Hong
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 471-487
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000489

TY - JOUR
T1 - Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments
A1 - Peize Zhang
A1 - Haiming Wang
A1 - Wei Hong
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 471
EP - 487
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000489


Abstract: 
The deployment of millimeter-wave (mmWave) cellular systems in dense urban environments with an acceptable coverage and cost-efficient transmission scheme is essential for the rollout of fifth-generation and beyond technology. In this paper, cluster-based analysis of mmWave channel characteristics in two typical dense urban environments is performed. First, radio propagation measurement campaigns are conducted in two identified mmWave bands of 28 and 39 GHz in a central business district and a dense residential area. The custom-designed channel sounder supports high-efficiency directional scanning sounding, which helps collect sufficient data for statistical channel modeling. Next, using an improved auto-clustering algorithm, multipath clusters and their scattering sources are identified. An appropriate measure for inter- and intra-cluster characteristics is provided, which includes the cluster number, the Ricean K-factor, root-mean-squared (RMS) delay spread, RMS angular spread, and their correlations. Comparisons of these parameters across two mmWave bands for both line-of-sight (LoS) and non-light-of-sight (NLoS) links are given. To shed light on the blockage effects, detailed analysis of the propagation mechanisms corresponding to each NLoS cluster is provided, including reflection from exterior walls and diffraction over building corners and rooftops. Finally, the results show that the cluster-based analysis takes full advantage of mmWave beamspace channel characteristics and has further implications for the design and deployment of mmWave wireless networks.

密集城区场景毫米波电波传播测量和分簇信道建模

张沛泽1,2,王海明1,2,洪伟1,2
1东南大学毫米波国家重点实验室,中国南京市,210096
2紫金山实验室,中国南京市,211111
概要:随着毫米波无线通信技术日趋成熟以及2019年世界无线电大会(WRC-19)正式将24.25–27.5、37–43.5、66–1 GHz等频段分配给国际移动通信系统,预计毫米波通信系统近期将陆续在世界范围内大规模商用部署。毫米波存在路径损耗大、难穿透等不利的传播特性,其覆盖范围受到很大限制。城市密集城区将是未来毫米波系统商用部署并发挥其大容量优势的主要应用场景。本文基于信道实测数据探明了在典型的密集城区场景和毫米波频段下信道多径分簇特性,为未来毫米波系统传输设计和覆盖优化提供了研究基础和实验依据。
毫米波信道测量系统利用高性能矢量信号源和矢量信号分析仪搭建了射频前端可重构的双定向信道测量系统。在发送端使用宽波束喇叭天线实现扇区覆盖,其位置与现网4G基站的部署位置一致;在接收端通过连续旋转高增益喇叭天线获取接收信号的角度信息。该系统可灵活支持多频段多场景信道测量,实现空-时-频多维信道特性获取。我们在两种典型密集城区环境以及28和39 GHz两个典型5G毫米波确认频段开展了大量信道实测,构建了信道实测数据库。考虑毫米波信道存在稀疏特性,提出改进的两步KPowerMeans多径分簇算法,在提升分簇准确性的同时有效减少了算法迭代次数。基于实测和分簇结果,可进一步分析环境因素对信道特性的影响,并建立在城市密集城区视距(LoS)和非视距(NLoS)场景下完备的多径簇统计信道模型。
信道分簇统计建模结果表明:在密集城区场景通常存在5–8个多径散射簇,具体的簇数目与环境密切相关,多径主要由建筑物外表面的一次和二次反射及屋顶和侧边绕射引起;由于存在丰富的多径,在适当的系统配置下通过架高发射天线,毫米波系统在NLoS场景下的覆盖范围可达到200米以上;相比于全向信道而言,簇内时延和水平角度扩展远小于全向信道的结果,并且随着工作频率升高,两者均呈现减小趋势;当接收机或用户在同一水平维度时,全向和簇内接收俯仰角度扩展近似,并且随频率变化不明显;对于不同信道统计参数间的相关性进行了分析,本文统计结果表明簇内时延和三维角度扩展间的相关性较弱。
综上,基于大量的信道实测数据及信道分簇结果,揭示了环境散射体与多径散射簇的映射关系,文中给出反射和绕射等传播机制对信道参数的影响,并在典型频段构建了适用于城市密集城区场景的三维信道统计模型,建模结果有效弥补了3GPP、ITU等模型因数据缺失所存在的不足。最后,结合测量和建模结果,为毫米波无线通信的物理层设计提供了参考。

关键词:毫米波通信;分簇;绕射;多路通道;传播测量

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP, 2018. Study on Channel Model for Frequency from 0.5 to 100 GHz. 3GPP TR 38.901 (V15.0.0).

[2]Andrews JG, Bai TY, Kulkarni MN, et al., 2017. Modeling and analyzing millimeter wave cellular systems. IEEE Trans Commun, 65(1):403-430.

[3]Bai TY, Alkhateeb A, Heath RW, 2014. Coverage and capacity of millimeter-wave cellular networks. IEEE Commun Mag, 52(9):70-77.

[4]Bas CU, Kristem V, Wang R, et al., 2019. Real-time ultra-wideband channel sounder design for 3–18 GHz. IEEE Trans Commun, 67(4):2995-3008.

[5]Czink N, Cera P, Salo J, et al., 2006a. A framework for automatic clustering of parametric MIMO channel data including path powers. Proc IEEE Vehicular Technology Conf, p.1-5.

[6]Czink N, Cera P, Salo J, et al., 2006b. Improving clustering performance using multipath component distance. Electron Lett, 42(1):33-35.

[7]Dupleich D, Müller R, Skoblikov S, et al., 2019. Multi-band double-directional 5G street canyon measurements in Germany. Proc European Conf on Networks and Communications, p.123-127.

[8]Haneda K, Omaki N, Imai T, et al., 2016. Frequency-agile pathloss models for urban street canyons. IEEE Trans Antenn Propag, 64(5):1941-1951.

[9]He RS, Ai B, Molisch AF, et al., 2018. Clustering enabled wireless channel modeling using big data algorithms. IEEE Commun Mag, 56(5):177-183.

[10]Huang C, Molisch AF, Wang R, et al., 2019. Angular information-based NLOS/LOS identification for vehicle to vehicle MIMO system. Proc IEEE Int Conf on Communications Workshops, p.1-6.

[11]Hur S, Baek S, Kim B, et al., 2016. Proposal on millimeter-wave channel modeling for 5G cellular system. IEEE J Sel Top Signal Process, 10(3):454-469.

[12]ITU, 2017. Multipath Propagation and Parameterization of Its Characteristics. ITU-R P.1407-6.

[13]ITU, 2019. ITU World Radiocommunication Conference Agrees Key Parameters for Future Communication Technologies. https://www.itu.int/en/mediacentre/Pages/2019-PR24.aspx [Accessed on Sept. 8, 2020].

[14]Jacob M, Priebe S, Dickhoff R, et al., 2012. Diffraction in mm and sub-mm wave indoor propagation channels. IEEE Trans Microw Theory Techn, 60(3):833-844.

[15]Kim KW, Kim MD, Park JJ, et al., 2017. Diffraction loss model based on 28 GHz over-rooftop propagation measurements. Proc IEEE86th Vehicular Technology Conf, p.1-5.

[16]Ko J, Cho YJ, Hur S, et al., 2017. Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz. IEEE Trans Wirel Commun, 16(9):5853-5868.

[17]Li J, Zhang PZ, Yu C, et al., 2019. High-efficiency wideband millimeter-wave channel sounder system. Proc 13th European Conf on Antennas and Propagation, p.1-5.

[18]Li Q, Shirani-Mehr H, Balercia T, et al., 2015. Millimeter wave channel model and system design considerations. Proc IEEE Int Conf on Communication Workshop, p.1214-1219.

[19]Ling C, Yin XF, Müller R, et al., 2018. Double-directional dual-polarimetric cluster-based characterization of 70–77 GHz indoor channels. IEEE Trans Antenn Propag, 66(2):857-870.

[20]MacCartney GR, Rappaport TS, 2017. A flexible millimeter-wave channel sounder with absolute timing. IEEE J Sel Areas Commun, 35(6):1402-1418.

[21]Raghavan V, Partyka A, Akhoondzadeh-Asl L, et al., 2017. Millimeter wave channel measurements and implications for PHY layer design. IEEE Trans Antenn Propag, 65(12):6521-6533.

[22]Rappaport TS, Deng SJ, 2015. 73 GHz wideband millimeter-wave foliage and ground reflection measurements and models. Proc IEEE Int Conf on Communication Workshop, p.1238-1243.

[23]Rappaport TS, Ben-Dor E, Murdock JN, et al., 2012. 38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications. Proc IEEE Int Conf on Communication, p.4568-4573.

[24]Rappaport TS, Sun S, Mayzus R, et al., 2013. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 1:335-349.

[25]Rappaport TS, MacCartney GR, Samimi MK, et al., 2015. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans Commun, 63(9):3029-3056.

[26]Rappaport TS, MacCartney GR, Sun S, et al., 2017. Small-scale, local area, and transitional millimeter wave propagation for 5G communications. IEEE Trans Antenn Propag, 65(12):6474-6490.

[27]Roh W, Seol JY, Park J, et al., 2014. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 52(2):106-113.

[28]Saad W, Bennis M, Chen MZ, 2020. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw, 34(3):134-142.

[29]Samimi MK, Rappaport TS, 2016. 3-D millimeter-wave statistical channel model for 5G wireless system design. IEEE Trans Microw Theory Techn, 64(7):2207-2225.

[30]Sangodoyin S, Kristem V, Molisch AF, et al., 2016. Statistical modeling of ultrawideband MIMO propagation channel in a warehouse environment. IEEE Trans Antenn Propag, 64(9):4049-4063.

[31]Sato K, Manabe T, Ihara T, et al., 1997. Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band. IEEE Trans Antenn Propag, 45(12):1783-1792.

[32]Sohrabi F, Yu W, 2016. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 10(3):501-513.

[33]Sun RY, Gentile CA, Senic J, et al., 2018. Millimeter-wave radio channels vs. synthetic beamwidth. IEEE Commun Mag, 56(12):53-59.

[34]Wang HM, Gao XQ, Jiang B, et al., 2007. Efficient MIMO channel estimation using complementary sequences. IET Commun, 1(5):962-969.

[35]Wang HM, Zhang PZ, Li J, et al., 2019. Radio propagation and wireless coverage of LSAA-based 5G millimeter-wave mobile communication systems. China Commun, 16(5):1-18.

[36]Xiao M, Mumtaz S, Huang YM, et al., 2017. Millimeter wave communications for future mobile networks. IEEE J Sel Areas Commun, 35(9):1909-1935.

[37]Xie HX, Gao FF, Jin S, 2016. An overview of low-rank channel estimation for massive MIMO systems. IEEE Access, 4:7313-7321.

[38]You XH, Wang CX, Huang J, et al., 2021. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inform Sci, 64(1):110301.

[39]Yu XH, Zhang J, Haenggi M, et al., 2017. Coverage analysis for millimeter wave networks: the impact of directional antenna arrays. IEEE J Sel Areas Commun, 35(7):1498-1512.

[40]Yuan YF, Zhao YJ, Zong BQ, et al., 2020. Potential key technologies for 6G mobile communications. Sci China Inform Sci, 63(8):183301.

[41]Zhang PZ, Wang HB, Zhou Y, et al., 2017. An improved three-dimensional auto-clustering algorithm for indoor millimeter-wave multipath propagation analysis. Proc IEEE/CIC Int Conf on Communications in China, p.1-6.

[42]Zhang PZ, Li J, Wang HB, et al., 2018. Indoor small-scale spatiotemporal propagation characteristics at multiple millimeter-wave bands. IEEE Antenn Wirel Propag Lett, 17(12):2250-2254.

[43]Zhang PZ, Li J, Wang HM, et al., 2019. Millimeter-wave space-time propagation characteristics in urban macrocell scenarios. Proc IEEE Int Conf on Communications, p.1-6.

[44]Zhao H, Mayzus R, Sun S, et al., 2013. 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city. Proc IEEE Int Conf on Communications, p.5163-5167.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE