CLC number:
On-line Access: 2022-02-28
Received: 2020-09-29
Revision Accepted: 2021-02-19
Crosschecked: 0000-00-00
Cited: 0
Clicked: 6326
Ming LI, Zhiqun LI, Quan ZHENG, Lanfeng LIN, Hongqi TAO. A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(2): 346-350.
@article{title="A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design",
author="Ming LI, Zhiqun LI, Quan ZHENG, Lanfeng LIN, Hongqi TAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="2",
pages="346-350",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000513"
}
%0 Journal Article
%T A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design
%A Ming LI
%A Zhiqun LI
%A Quan ZHENG
%A Lanfeng LIN
%A Hongqi TAO
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 2
%P 346-350
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000513
TY - JOUR
T1 - A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design
A1 - Ming LI
A1 - Zhiqun LI
A1 - Quan ZHENG
A1 - Lanfeng LIN
A1 - Hongqi TAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 2
SP - 346
EP - 350
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000513
Abstract: A wideband power amplifier is one of the key components in mobile communication systems and radar systems because it is a key component of radio frequency (RF) front-end systems, and its performance occupies a dominant position in the entire system function. GaN as the representative of the third generation of wide band gap semiconductors has the advantages of wide band gap, high electron mobility, and high breakdown field strength (Mishra et al., 2008; Millán et al., 2014). The power density of the device far exceeds that of Si and GaAs. Because of its high frequency, high power, high efficiency, high temperature resistance, high radiation resistance, and other excellent characteristics, GaN MMICs have broad application prospects in the microwave and millimeter wave bands.
[1]CampbellC, LeeC, WilliamsV, et al., 2009. A wideband power amplifier MMIC utilizing GaN on SiC HEMT technology. IEEE J Sol-State Circ, 44(10):2640-2647.
[2]ChenK, PeroulisD, 2011. Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks. IEEE Trans Microw Theory Techn, 59(12):3162-3173.
[3]DaiZJ, HeSB, YouF, et al., 2015. A new distributed parameter broadband matching method for power amplifier via real frequency technique. IEEE Trans Microw Theory Techn, 63(2):449-458.
[4]DinS, MorishitaAM, YamamotoN, et al., 2017. High-power K-band GaN PA MMICs and module for NPR and PAE. Proc IEEE MTT-S Int Microw Symp, p.1838-1841.
[5]DuffyMR, LasserG, NevettG, et al., 2019. A three-stage 18.5–24-GHz GaN-on-SiC 4 W 40% efficient MMIC PA. IEEE J Sol-State Circ, 54(9):2402-2410.
[6]KomiakJJ, ChuK, ChaoPC, 2011. Decade bandwidth 2 to 20 GHz GaN HEMT power amplifier MMICs in DFP and No FP technology. Proc IEEE MTT-S Int Microw Symp, p.1-4.
[7]MillánJ, GodignonP, PerpiñàX, et al., 2014. A survey of wide bandgap power semiconductor devices. IEEE Trans Power Electron, 29(5):2155-2163.
[8]MishraUK, ShenL, KaziorTE, et al., 2008. GaN-based RF power devices and amplifiers. Proc IEEE, 96(2):287-305.
[9]GrummanNorthrop, 2015. APN149, 18–23 GHz GaN Power Amplifier Datasheet. https://www.northropgrumman.com/wp-content/uploads/Microelectronics-APN149.pdf
[10]Qorvo, 2016. TGA4548, 17–20 GHz 10 Watt GaN Power Amplifier Datasheet. https://www.qorvo.com/products/p/TGA4548
[11]XiaJ, ZhuXW, ZhangL, 2014. A linearized 2–3.5 GHz highly efficient harmonic-tuned power amplifier exploiting stepped-impedance filtering matching network. IEEE Microw Wirel Compon Lett, 24(9):602-604.
Open peer comments: Debate/Discuss/Question/Opinion
<1>