Full Text:   <2006>

Summary:  <147>

CLC number: 

On-line Access: 2022-02-28

Received: 2020-09-29

Revision Accepted: 2021-02-19

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3513

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ming LI

https://orcid.org/0000-0003-1640-7318

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.2 P.346-350

http://doi.org/10.1631/FITEE.2000513


A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design


Author(s):  Ming LI, Zhiqun LI, Quan ZHENG, Lanfeng LIN, Hongqi TAO

Affiliation(s):  Institute of RF-&OE-ICs, Southeast University, Nanjing210096, China; more

Corresponding email(s):   liming_2018@seu.edu.cn, zhiqunli@seu.edu.cn

Key Words: 


Share this article to: More <<< Previous Article|

Ming LI, Zhiqun LI, Quan ZHENG, Lanfeng LIN, Hongqi TAO. A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(2): 346-350.

@article{title="A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design",
author="Ming LI, Zhiqun LI, Quan ZHENG, Lanfeng LIN, Hongqi TAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="2",
pages="346-350",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000513"
}

%0 Journal Article
%T A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design
%A Ming LI
%A Zhiqun LI
%A Quan ZHENG
%A Lanfeng LIN
%A Hongqi TAO
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 2
%P 346-350
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000513

TY - JOUR
T1 - A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design
A1 - Ming LI
A1 - Zhiqun LI
A1 - Quan ZHENG
A1 - Lanfeng LIN
A1 - Hongqi TAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 2
SP - 346
EP - 350
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000513


Abstract: 
A wideband power amplifier is one of the key components in mobile communication systems and radar systems because it is a key component of radio frequency (RF) front-end systems, and its performance occupies a dominant position in the entire system function. GaN as the representative of the third generation of wide band gap semiconductors has the advantages of wide band gap, high electron mobility, and high breakdown field strength (Mishra et al., 2008; Millán et al., 2014). The power density of the device far exceeds that of Si and GaAs. Because of its high frequency, high power, high efficiency, high temperature resistance, high radiation resistance, and other excellent characteristics, GaN MMICs have broad application prospects in the microwave and millimeter wave bands.

17-26.5 GHz 42.5 dBm宽带高效率GaN功率放大器设计

黎明1,2,李智群1,3,郑权2,蔺兰峰2,陶洪琪2
1东南大学射频与光电集成电路研究所,中国南京市,210096
2南京电子器件研究所,微波毫米波单片集成和模块电路重点实验室,中国南京市,210016
3教育部射频集成电路与射频系统工程研究中心,中国南京市,210016
摘要:提出一种在微波频段具有宽带、高效率的氮化镓(GaN)功率放大器。该功率放大器采用0.15 µm栅长GaN-HEMT工艺,其工作频段可以覆盖整个K频段,即17–26.5 GHz。为获得更好的输出功率和功率附加效率(PAE),根据晶体管的性能,设计了最优前后级驱动比和最佳晶体管尺寸,并采用宽带低损耗电路拓扑结构,实现宽带高效率设计。同时,将谐波控制结构巧妙地集成到驱动级匹配电路中,提升高频效率,确保整个频段内获得较高功率附加效率。该功率放大器采用三级放大拓扑结构,在连续波条件下,测试结果表明,在17-26.5 GHz频带范围内饱和输出功率超过42.5 dBm,平均PAE为30%,在19.8 GHz时PAE达到最大,为32.1%,输出功率平坦度优于1.0 dB。该芯片结构紧凑,面积仅为4.2 mm×3.0 mm,可广泛应用于收发组件、无线通信、电子测量仪器等领域。

关键词:K波段;高效率;宽带;氮化镓(GaN);功率放大器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]CampbellC, LeeC, WilliamsV, et al., 2009. A wideband power amplifier MMIC utilizing GaN on SiC HEMT technology. IEEE J Sol-State Circ, 44(10):2640-2647.

[2]ChenK, PeroulisD, 2011. Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks. IEEE Trans Microw Theory Techn, 59(12):3162-3173.

[3]DaiZJ, HeSB, YouF, et al., 2015. A new distributed parameter broadband matching method for power amplifier via real frequency technique. IEEE Trans Microw Theory Techn, 63(2):449-458.

[4]DinS, MorishitaAM, YamamotoN, et al., 2017. High-power K-band GaN PA MMICs and module for NPR and PAE. Proc IEEE MTT-S Int Microw Symp, p.1838-1841.

[5]DuffyMR, LasserG, NevettG, et al., 2019. A three-stage 18.5–24-GHz GaN-on-SiC 4 W 40% efficient MMIC PA. IEEE J Sol-State Circ, 54(9):2402-2410.

[6]KomiakJJ, ChuK, ChaoPC, 2011. Decade bandwidth 2 to 20 GHz GaN HEMT power amplifier MMICs in DFP and No FP technology. Proc IEEE MTT-S Int Microw Symp, p.1-4.

[7]MillánJ, GodignonP, PerpiñàX, et al., 2014. A survey of wide bandgap power semiconductor devices. IEEE Trans Power Electron, 29(5):2155-2163.

[8]MishraUK, ShenL, KaziorTE, et al., 2008. GaN-based RF power devices and amplifiers. Proc IEEE, 96(2):287-305.

[9]GrummanNorthrop, 2015. APN149, 18–23 GHz GaN Power Amplifier Datasheet. https://www.northropgrumman.com/wp-content/uploads/Microelectronics-APN149.pdf

[10]Qorvo, 2016. TGA4548, 17–20 GHz 10 Watt GaN Power Amplifier Datasheet. https://www.qorvo.com/products/p/TGA4548

[11]XiaJ, ZhuXW, ZhangL, 2014. A linearized 2–3.5 GHz highly efficient harmonic-tuned power amplifier exploiting stepped-impedance filtering matching network. IEEE Microw Wirel Compon Lett, 24(9):602-604.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE