Full Text:   <1206>

Summary:  <35>

CLC number: TN79

On-line Access: 2022-08-22

Received: 2021-06-17

Revision Accepted: 2021-09-30

Crosschecked: 2022-08-29

Cited: 0

Clicked: 2468

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Massoud Dousti

https://orcid.org/0000-0003-2884-7062

Hamideh KHAJEHNASIR-JAHROMI

https://orcid.org/0000-0003-333 1-5693

Pooya TORKZADEH

https://orcid.org/0000-0003-1646-7054

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.8 P.1264-1276

http://doi.org/10.1631/FITEE.2100287


Introducing scalable 1-bit full adders for designing quantum-dot cellular automata arithmetic circuits


Author(s):  Hamideh KHAJEHNASIR-JAHROMI, Pooya TORKZADEH, Massoud DOUSTI

Affiliation(s):  Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran 147789 3855, Iran

Corresponding email(s):   p-torkzadeh@srbiau.ac.ir, h.khajehnasir@srbiau.ac.ir, m_dousti@srbiau.ac.ir

Key Words:  Quantum-dot cellular automata (QCA), Full adder, Ripple carry adder (RCA), Add/sub circuit, Multiplier


Hamideh KHAJEHNASIR-JAHROMI, Pooya TORKZADEH, Massoud DOUSTI. Introducing scalable 1-bit full adders for designing quantum-dot cellular automata arithmetic circuits[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(8): 1264-1276.

@article{title="Introducing scalable 1-bit full adders for designing quantum-dot cellular automata arithmetic circuits",
author="Hamideh KHAJEHNASIR-JAHROMI, Pooya TORKZADEH, Massoud DOUSTI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="8",
pages="1264-1276",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100287"
}

%0 Journal Article
%T Introducing scalable 1-bit full adders for designing quantum-dot cellular automata arithmetic circuits
%A Hamideh KHAJEHNASIR-JAHROMI
%A Pooya TORKZADEH
%A Massoud DOUSTI
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 8
%P 1264-1276
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100287

TY - JOUR
T1 - Introducing scalable 1-bit full adders for designing quantum-dot cellular automata arithmetic circuits
A1 - Hamideh KHAJEHNASIR-JAHROMI
A1 - Pooya TORKZADEH
A1 - Massoud DOUSTI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 8
SP - 1264
EP - 1276
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100287


Abstract: 
Designing logic circuits using complementary metal-oxide-semiconductor (CMOS) technology at the nano scale has been faced with various challenges recently. Undesirable leakage currents, the short-effect channel, and high energy dissipation are some of the concerns. quantum-dot cellular automata (QCA) represent an appropriate alternative for possible CMOS replacement in the future because it consumes an insignificant amount of energy compared to the standard CMOS. The key point of designing arithmetic circuits is based on the structure of a 1-bit full adder. A low-complexity full adder block is beneficial for developing various intricate structures. This paper represents scalable 1-bit QCA full adder structures based on cell interaction. Our proposed full adders encompass preference aspects of QCA design, such as a low number of cells used, low latency, and small area occupation. Also, the proposed structures have been expanded to larger circuits, including a 4-bit ripple carry adder (RCA), a 4-bit ripple borrow subtractor (RBS), an add/sub circuit, and a 2-bit array multiplier. All designs were simulated and verified using QCA Designer-E version 2.2. This tool can estimate the energy dissipation as well as evaluate the performance of the circuits. Simulation results showed that the proposed designs are efficient in complexity, area, latency, cost, and energy dissipation.

用于设计量子点元胞自动机算术电路的可扩展1位全加器

Hamideh KHAJEHNASIR-JAHROMI,Pooya TORKZADEH,Massoud DOUSTI
伊斯兰阿扎德大学科学与研究部电气与计算机工程系,伊朗德黑兰市,1477893855
摘要:近年来,在纳米尺度上使用互补金属氧化物半导体(CMOS)技术设计逻辑电路面临着各种挑战。漏电流、短效应沟道和高能量耗散是一些亟待解决的问题。量子点元胞自动机(QCA)代表了未来可能替代CMOS的一种合适选择,因为与标准CMOS相比,它消耗的能量微不足道。设计算术电路关键是基于1位全加器的结构。低复杂度的全加器模块有利于开发各种复杂结构。本文介绍了基于单元交互的可扩展1位QCA全加器结构。我们提出的全加器包含QCA设计偏好,例如使用的单元数量少、延迟低和占用面积小。此外,所提结构已扩展到更大的电路,包括4位行波进位加法器(RCA)、4位行波借位减法器(RBS)、加/减电路和2位阵列乘法器。所有设计均使用QCA Designer-E 2.2版软件进行仿真和验证。该工具可以估计能量消耗以及评估电路的性能。仿真结果表明,所提设计在复杂度、面积、延迟、成本和能量消耗方面都是有效的。

关键词:量子点元胞自动机(QCA);全加器;行波进位加法器(RCA);加/减电路;乘数

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdullah-Al-Shafi, Bahar AN, 2018. An architecture of 2-dimensional 4-dot 2-electron QCA full adder and subtractor with energy dissipation study. Act Pass Electron Compon, 2018:5062960.

[2]Adelnia Y, Rezai A, 2019. A novel adder circuit design in quantum-dot cellular automata technology. Int J Theor Phys, 58(1):184-200.

[3]Ahmadpour SS, Mosleh M, Heikalabad SR, 2018. A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys B Condens Matter, 550:383-392.

[4]Arani IE, Rezai A, 2018. Novel circuit design of serial-parallel multiplier in quantum-dot cellular automata technology. J Comput Electron, 17(4):1771-1779.

[5]Babaie S, Sadoghifar A, Bahar AN, 2019. Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans Circ Syst II Expr Briefs, 66(6):963-967.

[6]Balali M, Rezai A, 2018. Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology. Int J Theor Phys, 57(7):1948-1960.

[7]Blair E, 2019. Electric-field inputs for molecular quantum-dot cellular automata circuits. IEEE Trans Nanotechnol, 18:453-460.

[8]Cesar TF, Vieira LFM, Vieira MAM, et al., 2020. Cellular automata-based byte error correction in QCA. Nano Commun Netw, 23:100278.

[9]Das JC, De D, 2017. Reversible binary subtractor design using quantum dot-cellular automata. Front Inform Technol Electron Eng, 18(9):1416-1429.

[10]Debnath B, Das JC, De D, 2019. Nanoscale cryptographic architecture design using quantum-dot cellular automata. Front Inform Technol Electron Eng, 20(11):1578-1586.

[11]Erniyazov S, Jeon JC, 2019. Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation. Microelectron Eng, 211:37-43.

[12]Gassoumi I, Touil L, Mtibaa A, 2021. An efficient design of QCA full-adder-subtractor with low power dissipation. J Electr Comput Eng, 2021:8856399.

[13]Hasani B, Navimipour NJ, 2021. A new design of a carry-save adder based on quantum-dot cellular automata. Iran J Sci Technol Trans Electr Eng, 45(3):993-999.

[14]Heikalabad SR, Asfestani MN, Hosseinzadeh M, 2018. A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput, 74(5):1994-2005.

[15]Heikalabad SR, Salimzadeh F, Barughi YZ, 2020. A unique three-layer full adder in quantum-dot cellular automata. Comput Electr Eng, 86:106735.

[16]Joy UB, Chakraborty S, Tasnim S, et al., 2021. Design of an area efficient quantum dot cellular automata based full adder cell having low latency. 2nd Int Conf on Robotics, Electrical and Signal Processing Techniques, p.689-693.

[17]Lent CS, Tougaw PD, Porod W, et al., 1993. Quantum cellular automata. Nanotechnology, 4(1):49.

[18]Liu WQ, Lu L, O’Neill M, et al., 2014. A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans Nanotechnol, 13(3):476-487.

[19]Maharaj J, Muthurathinam S, 2020. Effective RCA design using quantum dot cellular automata. Microprocess Microsyst, 73:102964.

[20]Majeed AH, Zainal MSB, Alkaldy E, et al., 2020. Full adder circuit design with novel lower complexity XOR gate in QCA technology. Trans Electr Electron Mater, 21(2):198-207.

[21]Mohammadi M, Mohammadi M, Gorgin S, 2016. An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron J, 50:35-43.

[22]Mosleh M, 2019. A novel full adder/subtractor in quantum-dot cellular automata. Int J Theor Phys, 58(1):221-246.

[23]Navidi A, Sabbaghi-Nadooshan R, Dousti M, 2021. A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata. Front Inform Technol Electron Eng, 22(11):1541-1550.

[24]Safoev N, Jeon JC, 2020. Design of high-performance QCA incrementer/decrementer circuit based on adder/subtractor methodology. Microprocess Microsyst, 72:102927.

[25]Salimzadeh F, Heikalabad SR, 2021. A full adder structure with a unique XNOR gate based on Coulomb interaction in QCA nanotechnology. Opt Quant Electron, 53(8):479.

[26]Sasamal TN, Singh AK, Ghanekar U, 2018. Efficient design of coplanar ripple carry adder in QCA. IET Circ Dev Syst, 12(5):594-605.

[27]Seyedi S, Navimipour NJ, 2018. An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik, 158:243-256.

[28]Singh G, Raj B, Sarin RK, 2018. Fault-tolerant design and analysis of QCA-based circuits. IET Circ Dev Syst, 12(5):638-644.

[29]Song ZX, Xie GJ, Cheng X, et al., 2020. An ultra-low cost multilayer RAM in quantum-dot cellular automata. IEEE Trans Circ Syst II Expr Briefs, 67(12):3397-3401.

[30]Walus K, Dysart TJ, Jullien GA, et al., 2004. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol, 3(1):26-31.

[31]Wang L, Xie GJ, 2019. A power-efficient single layer full adder design in field-coupled QCA nanocomputing. Int J Theor Phys, 58(7):2303-2319.

[32]Wang L, Xie GJ, 2020. A novel XOR/XNOR structure for modular design of QCA circuits. IEEE Trans Circ Syst II Expr Briefs, 67(12):3327-3331.

[33]Xiao LR, Chen XX, Ying SY, 2012. Design of dual-edge triggered flip-flops based on quantum-dot cellular automata. J Zhejiang Univ-Sci C (Comput & Electron), 13(5):385-392.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE