Full Text:   <2110>

CLC number: TN91

On-line Access: 2021-11-15

Received: 2020-10-31

Revision Accepted: 2021-03-31

Crosschecked: 2021-09-02

Cited: 0

Clicked: 3967

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Alireza Navidi

https://orcid.org/0000-0003-4089-5745

Reza Sabbaghi-Nadooshan

https://orcid.org/0000-0003-1201-914X

Massoud Dousti

https://orcid.org/0000-0003-2884-7062

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.11 P.1541-1550

http://doi.org/10.1631/FITEE.2000590


A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata


Author(s):  Alireza Navidi, Reza Sabbaghi-Nadooshan, Massoud Dousti

Affiliation(s):  Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; more

Corresponding email(s):   alireza.navidi@srbiau.ac.ir, r_sabbaghi@iauctb.ac.ir, m_dousti@srbiau.ac.ir

Key Words:  Quantum-dot cellular automata (QCA), Quaternary logic, QCASim, Quaternary QCA (QQCA), Quaternary decoder, Quaternary gates


Share this article to: More <<< Previous Article|

Alireza Navidi, Reza Sabbaghi-Nadooshan, Massoud Dousti. A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(11): 1541-1550.

@article{title="A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata",
author="Alireza Navidi, Reza Sabbaghi-Nadooshan, Massoud Dousti",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="11",
pages="1541-1550",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000590"
}

%0 Journal Article
%T A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata
%A Alireza Navidi
%A Reza Sabbaghi-Nadooshan
%A Massoud Dousti
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 11
%P 1541-1550
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000590

TY - JOUR
T1 - A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata
A1 - Alireza Navidi
A1 - Reza Sabbaghi-Nadooshan
A1 - Massoud Dousti
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 11
SP - 1541
EP - 1550
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000590


Abstract: 
New technologies such as quantum-dot cellular automata (QCA) have been showing some remarkable characteristics that standard complementary-metal-oxide semiconductor (CMOS) in deep sub-micron cannot afford. Modeling systems and designing multiple-valued logic gates with QCA have advantages that facilitate the design of complicated logic circuits. In this paper, we propose a novel creative concept for quaternary QCA (QQCA). The concept has been set in QCASim, the new simulator developed by our team exclusively for QCAs’ quaternary mode. Proposed basic quaternary logic gates such as MIN, MAX, and different types of inverters (SQI, PQI, NQI, and IQI) have been designed and verified by QCASim. This study will exemplify how fast and accurately QCASim works by its handy set of CAD tools. A 1×4 decoder is presented using our proposed main gates. Preference points such as the minimum delay, area, and complexity have been achieved in this work. QQCA main logic gates are compared with quaternary gates based on carbon nanotube field-effect transistor (CNFET). The results show that the proposed design is more efficient in terms of latency and energy consumption.

量子点细胞自动机中四值逻辑门的设计与模拟新概念

Alireza Navidi1, Reza Sabbaghi-Nadooshan2, Massoud Dousti1
1伊斯兰阿扎德大学科学与研究分校电气与计算机工程系,伊朗德黑兰,1477893855
2伊斯兰阿扎德大学德黑兰中心分校电气工程系,伊朗德黑兰,13117773591
摘要:量子点细胞自动机(QCA)等新技术已展现出一些深亚微米标准互补金属氧化物半导体无法提供的显著特性。用QCA进行系统建模和设计多值逻辑门,可使复杂逻辑电路设计更加便捷。本文提出“四值QCA(QQCA)”新概念。该概念已在本团队专为四值QCA模型开发的量子点细胞自动模拟器(QCASim)中设定。设计了基本四值QCA逻辑门,如MIN、MAX和不同类型反相器(SQI,PQI,NQI和IQI),并通过QCASim验证。本文将例示QCASim如何通过其方便的CAD工具集快速而准确地工作。采用所设计的主要门电路设计了一个1×4译码器。基于QQCA设计的电路,取得最小延迟、最小面积和最低复杂度。将QQCA主要的逻辑门与基于碳纳米管场效应晶体管(CNFET)的四值门进行比较,结果表明本文所设计的电路具有更小延迟和更低能耗。

关键词:量子点细胞自动机(QCA);四值逻辑;量子点细胞自动模拟器(QCASim);四值QCA(QQCA);四值译码器;四值门

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abiri E, Darabi A, Salem S, 2018. Design of multiple-valued logic gates using gate-diffusion input for image processing applications. Comput Electr Eng, 69:142-157.

[2]Amlani I, Orlov AO, Kummamuru RK, et al., 2000. Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl Phys Lett, 77(5):738-740.

[3]Arjmand MM, Soryani M, Navi K, 2013. Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circ Dev Syst, 7(5):263-272.

[4]Arulkarthick VJ, Rathinaswamy A, Srihari K, 2020. Design of BCD adder with five input majority gate for QCA. Microproc Microsyst, 75:103040.

[5]Bahar AN, Rahman MM, Nahid NM, et al., 2017. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata. Data Brief, 10:557-560.

[6]Bernstein GH, Imre A, Metlushko V, et al., 2005. Magnetic QCA systems. Microelectron J, 36(7):619-624.

[7]Cowburn RP, Welland ME, 2000. Room temperature magnetic quantum cellular automata. Science, 287(5457):1466-1468.

[8]Daraei A, Hosseini SA, 2019. Novel energy-efficient and high-noise margin quaternary circuits in nanoelectronics. AEU Int J Electron Commun, 105:145-162.

[9]Das JC, De D, 2017. Reversible binary subtractor design using quantum dot-cellular automata. Front Inform Technol Electron Eng, 18(9):1416-1429.

[10]da Silva RCG, Boudinov H, Carro L, 2006. A novel voltage-mode CMOS quaternary logic design. IEEE Trans Electron Dev, 53(6):1480-1483.

[11]Debnath B, Das JC, De D, 2019. Nanoscale cryptographic architecture design using quantum-dot cellular automata. Front Inform Technol Electron Eng, 20(11):1578-1586.

[12]Ebrahimi SA, Reshadinezhad MR, Bohlooli A, et al., 2016. Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits. Microelectron J, 53:156-166.

[13]Haghparast M, Monfared AT, 2017. Novel quaternary quantum decoder, multiplexer and demultiplexer circuits. Int J Theor Phys, 56(5):1694-1707.

[14]Jahangir I, Das A, Hasan M, 2012. Design of novel quaternary encoders and decoders. Int Conf on Informatics, Electronics & Vision, p.1021-1026.

[15]Kim K, Wu KJ, Karri R, 2007. The robust QCA adder designs using composable QCA building blocks. IEEE Trans Comput-Aided Des Integr Circ Syst, 26(1):176-183.

[16]Lent CS, Tougaw PD, Porod W, et al., 1993. Quantum cellular automata. Nanotechnology, 4(1):49.

[17]Lent CS, Tougaw PD, Porod W, 1994. Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. Proc Workshop on Physics and Computation, p.5-13.

[18]Lent CS, Isaksen B, Lieberman M, 2003. Molecular quantum-dot cellular automata. J Am Chem Soc, 125(4):1056-1063.

[19]Liu WQ, Lu L, O’Neill M, et al., 2014. A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans Nanotechnol, 13(3):476-487.

[20]Lu YH, Lent CS, 2005. Theoretical study of molecular quantum-dot cellular automata. J Comput Electron, 4(1-2):115-118.

[21]Mohaghegh SM, Sabbaghi-Nadooshan R, Mohammadi M, 2018a. Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model. Comput Electr Eng, 71:43-59.

[22]Mohaghegh SM, Sabbaghi-Nadooshan R, Mohammadi M, 2018b. Innovative model for ternary QCA gates. IET Circ Dev Syst, 12(2):189-195.

[23]Mohaghegh SM, Sabbaghi-Nadooshan R, Mohammadi M, 2019. Design of a ternary QCA multiplier and multiplexer: a model-based approach. Analog Integr Circ Signal Process, 101(1):23-29.

[24]Navidi A, Sabbaghi-Nadooshan R, Dousti M, 2021. TQCAsim: an accurate design and essential simulation tool for ternary logic quantum-dot cellular automata. Sci Iran, in press.

[25]Oklobdzija VG, 2001. The Computer Engineering Handbook. CRC Press, Boca Raton, USA.

[26]Orlov AO, Amlani I, Bernstein GH, et al., 1997. Realization of a functional cell for quantum-dot cellular automata. Science, 277(5328):928-930.

[27]Orlov AO, Kummamuru RK, Ramasubramaniam R, et al., 2001. Experimental demonstration of a latch in clocked quantum-dot cellular automata. Appl Phys Lett, 78(11):1625-1627.

[28]Perez-Martinez F, Farrer I, Anderson D, et al., 2007. Demonstration of a quantum cellular automata cell in a GaAs/AlGaAs heterostructure. Appl Phys Lett, 91(3):032102.

[29]Shahrom E, Hosseini SA, 2018. A new low power multiplexer based ternary multiplier using CNTFETs. AEU Int J Electron Commun, 93:191-207.

[30]Shalamzari ZD, Zarandi AD, Reshadinezhad MR, 2020. Newly multiplexer-based quaternary half-adder and multiplier using CNTFETs. AEU Int J Electron Commun, 117:153128.

[31]Sharifi F, Moaiyeri MH, Navi K, et al., 2015. Robust and energy-efficient carbon nanotube FET-based MVL gates: a novel design approach. Microelectr J, 46(12):1333-1342.

[32]Sharifi F, Panahi A, Sharifi H, et al., 2016. Design of quaternary 4–2 and 5–2 compressors for nanotechnology. Comput Electr Eng, 56:64-74.

[33]Vankamamidi V, Ottavi M, Lombardi F, 2006. Clocking and cell placement for QCA. 6th IEEE Conf on Nanotechnology, p.343-346.

[34]Walus K, Dysart TJ, Jullien GA, et al., 2004. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol, 3(1):26-31.

[35]Wang L, Xie GJ, 2020. A novel XOR/XNOR structure for modular design of QCA circuits. IEEE Trans Circ Syst II, 67(12):3327-3331.

[36]Yasuda Y, Tokuda Y, Zaima S, et al., 1986. Realization of quaternary logic circuits by n-channel MOS devices. IEEE J Sol-State Circ, 21(1):162-168.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE