Full Text:   <2110>

CLC number: TN91

On-line Access: 2021-11-15

Received: 2020-10-31

Revision Accepted: 2021-03-31

Crosschecked: 2021-09-02

Cited: 0

Clicked: 3967

Citations:  Bibtex RefMan EndNote GB/T7714


Alireza Navidi


Reza Sabbaghi-Nadooshan


Massoud Dousti


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.11 P.1541-1550


A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata

Author(s):  Alireza Navidi, Reza Sabbaghi-Nadooshan, Massoud Dousti

Affiliation(s):  Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; more

Corresponding email(s):   alireza.navidi@srbiau.ac.ir, r_sabbaghi@iauctb.ac.ir, m_dousti@srbiau.ac.ir

Key Words:  Quantum-dot cellular automata (QCA), Quaternary logic, QCASim, Quaternary QCA (QQCA), Quaternary decoder, Quaternary gates

Share this article to: More <<< Previous Article|

Alireza Navidi, Reza Sabbaghi-Nadooshan, Massoud Dousti. A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(11): 1541-1550.

@article{title="A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata",
author="Alireza Navidi, Reza Sabbaghi-Nadooshan, Massoud Dousti",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata
%A Alireza Navidi
%A Reza Sabbaghi-Nadooshan
%A Massoud Dousti
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 11
%P 1541-1550
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000590

T1 - A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata
A1 - Alireza Navidi
A1 - Reza Sabbaghi-Nadooshan
A1 - Massoud Dousti
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 11
SP - 1541
EP - 1550
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000590

New technologies such as quantum-dot cellular automata (QCA) have been showing some remarkable characteristics that standard complementary-metal-oxide semiconductor (CMOS) in deep sub-micron cannot afford. Modeling systems and designing multiple-valued logic gates with QCA have advantages that facilitate the design of complicated logic circuits. In this paper, we propose a novel creative concept for quaternary QCA (QQCA). The concept has been set in QCASim, the new simulator developed by our team exclusively for QCAs’ quaternary mode. Proposed basic quaternary logic gates such as MIN, MAX, and different types of inverters (SQI, PQI, NQI, and IQI) have been designed and verified by QCASim. This study will exemplify how fast and accurately QCASim works by its handy set of CAD tools. A 1×4 decoder is presented using our proposed main gates. Preference points such as the minimum delay, area, and complexity have been achieved in this work. QQCA main logic gates are compared with quaternary gates based on carbon nanotube field-effect transistor (CNFET). The results show that the proposed design is more efficient in terms of latency and energy consumption.


Alireza Navidi1, Reza Sabbaghi-Nadooshan2, Massoud Dousti1


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abiri E, Darabi A, Salem S, 2018. Design of multiple-valued logic gates using gate-diffusion input for image processing applications. Comput Electr Eng, 69:142-157.

[2]Amlani I, Orlov AO, Kummamuru RK, et al., 2000. Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl Phys Lett, 77(5):738-740.

[3]Arjmand MM, Soryani M, Navi K, 2013. Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circ Dev Syst, 7(5):263-272.

[4]Arulkarthick VJ, Rathinaswamy A, Srihari K, 2020. Design of BCD adder with five input majority gate for QCA. Microproc Microsyst, 75:103040.

[5]Bahar AN, Rahman MM, Nahid NM, et al., 2017. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata. Data Brief, 10:557-560.

[6]Bernstein GH, Imre A, Metlushko V, et al., 2005. Magnetic QCA systems. Microelectron J, 36(7):619-624.

[7]Cowburn RP, Welland ME, 2000. Room temperature magnetic quantum cellular automata. Science, 287(5457):1466-1468.

[8]Daraei A, Hosseini SA, 2019. Novel energy-efficient and high-noise margin quaternary circuits in nanoelectronics. AEU Int J Electron Commun, 105:145-162.

[9]Das JC, De D, 2017. Reversible binary subtractor design using quantum dot-cellular automata. Front Inform Technol Electron Eng, 18(9):1416-1429.

[10]da Silva RCG, Boudinov H, Carro L, 2006. A novel voltage-mode CMOS quaternary logic design. IEEE Trans Electron Dev, 53(6):1480-1483.

[11]Debnath B, Das JC, De D, 2019. Nanoscale cryptographic architecture design using quantum-dot cellular automata. Front Inform Technol Electron Eng, 20(11):1578-1586.

[12]Ebrahimi SA, Reshadinezhad MR, Bohlooli A, et al., 2016. Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits. Microelectron J, 53:156-166.

[13]Haghparast M, Monfared AT, 2017. Novel quaternary quantum decoder, multiplexer and demultiplexer circuits. Int J Theor Phys, 56(5):1694-1707.

[14]Jahangir I, Das A, Hasan M, 2012. Design of novel quaternary encoders and decoders. Int Conf on Informatics, Electronics & Vision, p.1021-1026.

[15]Kim K, Wu KJ, Karri R, 2007. The robust QCA adder designs using composable QCA building blocks. IEEE Trans Comput-Aided Des Integr Circ Syst, 26(1):176-183.

[16]Lent CS, Tougaw PD, Porod W, et al., 1993. Quantum cellular automata. Nanotechnology, 4(1):49.

[17]Lent CS, Tougaw PD, Porod W, 1994. Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. Proc Workshop on Physics and Computation, p.5-13.

[18]Lent CS, Isaksen B, Lieberman M, 2003. Molecular quantum-dot cellular automata. J Am Chem Soc, 125(4):1056-1063.

[19]Liu WQ, Lu L, O’Neill M, et al., 2014. A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans Nanotechnol, 13(3):476-487.

[20]Lu YH, Lent CS, 2005. Theoretical study of molecular quantum-dot cellular automata. J Comput Electron, 4(1-2):115-118.

[21]Mohaghegh SM, Sabbaghi-Nadooshan R, Mohammadi M, 2018a. Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model. Comput Electr Eng, 71:43-59.

[22]Mohaghegh SM, Sabbaghi-Nadooshan R, Mohammadi M, 2018b. Innovative model for ternary QCA gates. IET Circ Dev Syst, 12(2):189-195.

[23]Mohaghegh SM, Sabbaghi-Nadooshan R, Mohammadi M, 2019. Design of a ternary QCA multiplier and multiplexer: a model-based approach. Analog Integr Circ Signal Process, 101(1):23-29.

[24]Navidi A, Sabbaghi-Nadooshan R, Dousti M, 2021. TQCAsim: an accurate design and essential simulation tool for ternary logic quantum-dot cellular automata. Sci Iran, in press.

[25]Oklobdzija VG, 2001. The Computer Engineering Handbook. CRC Press, Boca Raton, USA.

[26]Orlov AO, Amlani I, Bernstein GH, et al., 1997. Realization of a functional cell for quantum-dot cellular automata. Science, 277(5328):928-930.

[27]Orlov AO, Kummamuru RK, Ramasubramaniam R, et al., 2001. Experimental demonstration of a latch in clocked quantum-dot cellular automata. Appl Phys Lett, 78(11):1625-1627.

[28]Perez-Martinez F, Farrer I, Anderson D, et al., 2007. Demonstration of a quantum cellular automata cell in a GaAs/AlGaAs heterostructure. Appl Phys Lett, 91(3):032102.

[29]Shahrom E, Hosseini SA, 2018. A new low power multiplexer based ternary multiplier using CNTFETs. AEU Int J Electron Commun, 93:191-207.

[30]Shalamzari ZD, Zarandi AD, Reshadinezhad MR, 2020. Newly multiplexer-based quaternary half-adder and multiplier using CNTFETs. AEU Int J Electron Commun, 117:153128.

[31]Sharifi F, Moaiyeri MH, Navi K, et al., 2015. Robust and energy-efficient carbon nanotube FET-based MVL gates: a novel design approach. Microelectr J, 46(12):1333-1342.

[32]Sharifi F, Panahi A, Sharifi H, et al., 2016. Design of quaternary 4–2 and 5–2 compressors for nanotechnology. Comput Electr Eng, 56:64-74.

[33]Vankamamidi V, Ottavi M, Lombardi F, 2006. Clocking and cell placement for QCA. 6th IEEE Conf on Nanotechnology, p.343-346.

[34]Walus K, Dysart TJ, Jullien GA, et al., 2004. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol, 3(1):26-31.

[35]Wang L, Xie GJ, 2020. A novel XOR/XNOR structure for modular design of QCA circuits. IEEE Trans Circ Syst II, 67(12):3327-3331.

[36]Yasuda Y, Tokuda Y, Zaima S, et al., 1986. Realization of quaternary logic circuits by n-channel MOS devices. IEEE J Sol-State Circ, 21(1):162-168.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE