Full Text:   <1612>

Summary:  <293>

CLC number: TP13

On-line Access: 2022-07-21

Received: 2021-12-08

Revision Accepted: 2022-07-21

Crosschecked: 2022-05-08

Cited: 0

Clicked: 1745

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ruizhuo SONG

https://orcid.org/0000-0002-6693-2738

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.7 P.1057-1068

http://doi.org/10.1631/FITEE.2100565


Finite-time leader-follower consensus of a discrete-time system via sliding mode control


Author(s):  Ruizhuo SONG, Shi XING, Zhen XU

Affiliation(s):  School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China; more

Corresponding email(s):   ruizhuosong@ustb.edu.cn, xingshi7@qq.com, xuzhen@ustb.edu.cn

Key Words:  Finite-time, Leader-follower consensus, Adaptive sliding mode control, Multi-agent systems


Ruizhuo SONG, Shi XING, Zhen XU. Finite-time leader-follower consensus of a discrete-time system via sliding mode control[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(7): 1057-1068.

@article{title="Finite-time leader-follower consensus of a discrete-time system via sliding mode control",
author="Ruizhuo SONG, Shi XING, Zhen XU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="7",
pages="1057-1068",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100565"
}

%0 Journal Article
%T Finite-time leader-follower consensus of a discrete-time system via sliding mode control
%A Ruizhuo SONG
%A Shi XING
%A Zhen XU
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 7
%P 1057-1068
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100565

TY - JOUR
T1 - Finite-time leader-follower consensus of a discrete-time system via sliding mode control
A1 - Ruizhuo SONG
A1 - Shi XING
A1 - Zhen XU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 7
SP - 1057
EP - 1068
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100565


Abstract: 
In this study, we solve the finite-time leader-follower consensus problem of discrete-time second-order multi-agent systems (MASs) under the constraints of external disturbances. First, a novel consensus scheme is designed using a novel adaptive sliding mode control theory. Our adaptive controller is designed using the traditional sliding mode reaching law, and its advantages are chatter reduction and invariance to disturbances. In addition, the finite-time stability is demonstrated by presenting a discrete Lyapunov function. Finally, simulation results are presented to prove the validity of our theoretical results.

基于离散系统滑模控制的有限时间领导-跟随一致性

宋睿卓1,2,邢适1,2,许镇3
1北京科技大学自动化学院,中国北京市,100083
2北京市工业波谱成像工程技术研究中心,中国北京市,100083
3北京科技大学土木与资源工程学院,城镇化与城市安全研究院,中国北京市,100083
摘要:研究了离散时间二阶多智能体系统在外部干扰约束下的有限时间领导-跟随一致性问题。首先利用自适应滑模控制理论,设计了一种新的有限时间一致性方案。自适应控制律是在传统滑模趋近律基础上改进设计的,其优点是减少抖振并保持对干扰的不变性。此外,通过给出一个离散李雅普诺夫函数,证明了离散时间二阶多智能体系统的有限时间稳定性。最后,数值模拟结果验证了理论分析的有效性。

关键词:有限时间;领导-跟随一致性;自适应滑模控制;多智能体系统

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Atınç GM, Stipanović DM, Voulgaris PG, 2014. Supervised coverage control of multi-agent systems. Automatica, 50(11):2936-2942.

[2]Chen SB, Beigi A, Yousefpour A, et al., 2020. Recurrent neural network-based robust nonsingular sliding mode control with input saturation for a non-holonomic spherical robot. IEEE Access, 8:188441-188453.

[3]Chowdhury NR, Sukumar S, Chatterjee D, 2018. A new condition for asymptotic consensus over switching graphs. Automatica, 97:18-26.

[4]Cruz-Piris L, Rivera D, Fernandez S, et al., 2018. Optimized sensor network and multi-agent decision support for smart traffic light management. Sensors, 18(2):435.

[5]Cui GZ, Xu SY, Ma Q, et al., 2018. Command-filter-based distributed containment control of nonlinear multi-agent systems with actuator failures. Int J Contr, 91(7):1708-1719.

[6]Cui Q, Huang JS, Gao TT, 2020. Adaptive leaderless consensus control of uncertain multiagent systems with unknown control directions. Int J Robust Nonl Contr, 30(15):6229-6240.

[7]Deng C, Er MJ, Yang GH, et al., 2020. Event-triggered consensus of linear multiagent systems with time-varying communication delays. IEEE Trans Cybern, 50(7):2916-2925.

[8]Fei Y, Shi P, Lim CC, 2020. Neural network adaptive dynamic sliding mode formation control of multi-agent systems. Int J Syst Sci, 51(11):2025-2040.

[9]Gao WB, Wang YF, Homaifa A, 1995. Discrete-time variable structure control systems. IEEE Trans Ind Electron, 42(2):117-122.

[10]Hamrah R, Sanya AK, Viswanathan SP, 2019. Discrete finite-time stable position tracking control of unmanned vehicles. Proc IEEE 58th Conf on Decision and Control, p.7025-7030.

[11]Han GJ, Long XB, Zhu C, et al., 2020. A high-availability data collection scheme based on multi-AUVs for underwater sensor networks. IEEE Trans Mob Comput, 19(5):1010-1022.

[12]Li P, Xu SY, Chu YM, et al., 2018. Finite-time leader-following rendezvous for Euler-Lagrange multi-agent systems with an uncertain leader. Trans Inst Meas Contr, 40(6):1766-1775.

[13]Li Q, Xia LN, Song RZ, 2019a. Bipartite state synchronization of heterogeneous system with active leader on signed digraph under adversarial inputs. Neurocomputing, 369:69-79.

[14]Li Q, Xia LN, Song RZ, 2019b. Output resilient containment control of heterogeneous systems with active leaders using reinforcement learning under attack inputs. IEEE Access, 7:162219-162228.

[15]Li Q, Xia LN, Song RZ, et al., 2020. Leader-follower bipartite output synchronization on signed digraphs under adversarial factors via data-based reinforcement learning. IEEE Trans Neur Netw Learn Syst, 31(10):4185-4195.

[16]Li Q, Xia LN, Song RZ, et al., 2021. Output event-triggered tracking synchronization of heterogeneous systems on directed digraph via model-free reinforcement learning. Inform Sci, 559:171-190.

[17]Li ZK, Duan ZS, Chen GR, et al., 2009. Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans Circ Syst I Reg Papers, 57(1):213-224.

[18]Liang HJ, Liu GL, Zhang HG, et al., 2021. Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties. IEEE Trans Neur Netw Learn Syst, 32(5):2239-2250.

[19]Liu HY, Cheng L, Tan M, et al., 2020. Exponential finite-time consensus of fractional-order multiagent systems. IEEE Trans Syst Man Cybern Syst, 50(4):1549-1558.

[20]Liu JH, Wang CL, Cai X, 2019. Global finite-time event-triggered consensus for a class of second-order multi-agent systems with the power of positive odd rational number and quantized control inputs. Neurocomputing, 360:254-264.

[21]Liu JW, Huang J, 2021. Discrete-time leader-following consensus over switching digraphs with general system modes. IEEE Trans Autom Contr, 66(3):1238-1245.

[22]Liu XY, Cao JD, Xie CL, 2019. Finite-time and fixed-time bipartite consensus of multi-agent systems under a unified discontinuous control protocol. J Franklin Inst, 356(2):734-751.

[23]Liu YF, Su HS, 2021. Second-order consensus for multiagent systems with switched dynamics and sampled position data. IEEE Trans Syst Man Cybern Syst, 52(7):4129-4137.

[24]Lu JQ, Wang YQ, Shi XC, et al., 2021. Finite-time bipartite consensus for multiagent systems under detail-balanced antagonistic interactions. IEEE Trans Syst Man Cybern Syst, 51(6):3867-3875.

[25]Min HF, Xu SY, Li YM, et al., 2018. Adaptive finite-time control for stochastic nonlinear systems subject to unknown covariance noise. J Franklin Inst, 355(5):2645-2661.

[26]Ning BD, Han QL, 2019. Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics. IEEE Trans Autom Contr, 64(4):1686-1693.

[27]Oh KK, Park MC, Ahn HS, 2015. A survey of multi-agent formation control. Automatica, 53:424-440.

[28]Olfati-Saber R, 2006. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Contr, 51(3):401-420.

[29]Olfati-Saber R, Murray RM, 2004. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Contr, 49(9):1520-1533.

[30]Olfati-Saber R, Fax JA, Murray RM, 2007. Consensus and cooperation in networked multi-agent systems. Proc IEEE, 95(1):215-233.

[31]Qin JH, Zhang G, Zheng WX, et al., 2019. Adaptive sliding mode consensus tracking for second-order nonlinear multiagent systems with actuator faults. IEEE Trans Cybern, 49(5):1605-1615.

[32]Ren W, 2008. Consensus algorithms for double-integrator dynamics. IEEE Trans Autom Contr, 53(6):1503-1509.

[33]Ren W, Beard RW, 2008. Distributed Consensus in Multi-vehicle Cooperative Control. Springer, London, UK.

[34]Shao XF, Ye D, 2021. Fuzzy adaptive event-triggered secure control for stochastic nonlinear high-order mass subject to DOS attacks and actuator faults. IEEE Trans Fuzzy Syst, 29(12):3812-3821.

[35]Shi S, Feng HY, Liu WH, et al., 2019. Finite-time consensus of high-order heterogeneous multi-agent systems with mismatched disturbances and nonlinear dynamics. Nonl Dynam, 96(2):1317-1333.

[36]Sinha A, Mishra RK, 2020. Consensus in first order nonlinear heterogeneous multi-agent systems with event-based sliding mode control. Int J Contr, 93(4):858-871.

[37]Sun ZJ, Zhang GQ, Lu Y, et al., 2018. Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation. ISA Trans, 72:15-24.

[38]Tong P, Chen SH, Wang L, 2018. Finite-time consensus of multi-agent systems with continuous time-varying interaction topology. Neurocomputing, 284:187-193.

[39]Tsai JSH, Fang JS, Yan JJ, et al., 2018. Hybrid robust discrete sliding mode control for generalized continuous chaotic systems subject to external disturbances. Nonl Anal Hybr Syst, 29:74-84.

[40]Utkin V, 1977. Variable structure systems with sliding modes. IEEE Trans Autom Contr, 22(2):212-222.

[41]Wang B, Tian YP, 2021. Consensus of discrete-time multi-agent systems with multiplicative uncertainties and delays. Int J Syst Sci, 52(11):2311-2323.

[42]Wang GD, Wang XY, Li SH, 2018. Sliding-mode consensus algorithms for disturbed second-order multi-agent systems. J Franklin Inst, 355(15):7443-7465.

[43]Wang JY, Qiao JF, Wen GH, et al., 2021. Rendezvous of heterogeneous multiagent systems with nonuniform time-varying information delays: an adaptive approach. IEEE Trans Syst Man Cybern Syst, 51(8):4848-4857.

[44]Wang QL, Sun CY, 2020. Adaptive consensus of multiagent systems with unknown high-frequency gain signs under directed graphs. IEEE Trans Syst Man Cybern Syst, 50(6):2181-2186.

[45]Wang QS, Duan ZS, Lv YZ, et al., 2021. Linear quadratic optimal consensus of discrete-time multi-agent systems with optimal steady state: a distributed model predictive control approach. Automatica, 127:109505.

[46]Wang W, Liang HJ, Pan YN, et al., 2020. Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer. IEEE Trans Cybern, 50(9):3879-3891.

[47]Wang XY, Li SH, Chen MZQ, 2018. Composite backstepping consensus algorithms of leader-follower higher-order nonlinear multiagent systems subject to mismatched disturbances. IEEE Trans Cybern, 48(6):1935-1946.

[48]Wang YL, Jahanshahi H, Bekiros S, et al., 2021. Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence. Chaos Sol Fract, 146: 110881.

[49]Xia LN, Li Q, Song RZ, et al., 2022a. Optimal synchronization control of heterogeneous asymmetric input-constrained unknown nonlinear mass via reinforcement learning. IEEE/CAA J Autom Sin, 9(3):520-532.

[50]Xia LN, Li Q, Song RZ, et al., 2022b. Leader-follower time-varying output formation control of heterogeneous systems under cyber attack with active leader. Inform Sci, 585:24-40.

[51]Xie DS, Xu SY, Zhang BY, et al., 2016. Consensus for multi-agent systems with distributed adaptive control and an event-triggered communication strategy. IET Contr Theory Appl, 10(13):1547-1555.

[52]Xu Y, Wu ZG, 2021. Distributed adaptive event-triggered fault-tolerant synchronization for multiagent systems. IEEE Trans Ind Electron, 68(2):1537-1547.

[53]Yao DY, Li HY, Lu RQ, et al., 2020. Distributed sliding-mode tracking control of second-order nonlinear multi-agent systems: an event-triggered approach. IEEE Trans Cybern, 50(9):3892-3902.

[54]Young KD, Utkin VI, Ozguner U, 1999. A control engineer's guide to sliding mode control. IEEE Trans Contr Syst Technol, 7(3):328-342.

[55]Yu SH, Long XJ, 2015. Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica, 54:158-165.

[56]Zhang HG, Zhou Y, Liu Y, et al., 2020a. Cooperative bipartite containment control for multiagent systems based on adaptive distributed observer. IEEE Trans Cybern, 52(6):5432-5440.

[57]Zhang HG, Zhang J, Cai YL, et al., 2020b. Leader-following consensus for a class of nonlinear multiagent systems under event-triggered and edge-event triggered mechanisms. IEEE Trans Cybern, early access.

[58]Zhang HG, Duan J, Wang YC, et al., 2021a. Bipartite fixed-time output consensus of heterogeneous linear multi-agent systems. IEEE Trans Cybern, 51(2):548-557.

[59]Zhang HG, Ren H, Mu YF, et al., 2021b. Optimal consensus control design for multiagent systems with multiple time delay using adaptive dynamic programming. IEEE Trans Cybern, early access.

[60]Zhang J, Zhang HG, Sun SX, et al., 2021. Leader-follower consensus control for linear multi-agent systems by fully distributed edge-event-triggered adaptive strategies. Inform Sci, 555:314-338.

[61]Zhang JL, Chen X, Gu GX, 2021. State consensus for discrete-time multiagent systems over time-varying graphs. IEEE Trans Autom Contr, 66(1):346-353.

[62]Zhang WL, Mao S, Huang JH, et al., 2021. Data-driven resilient control for linear discrete-time multi-agent networks under unconfined cyber-attacks. IEEE Trans Circ Syst I Reg Papers, 68(2):776-785.

[63]Zhang YY, Li S, Liao LF, 2021. Consensus of high-order discrete-time multiagent systems with switching topology. IEEE Trans Syst Man Cybern Syst, 51(2):721-730.

[64]Zhang Z, Shi Y, Zhang ZX, et al., 2019. New results on sliding-mode control for Takagi-Sugeno fuzzy multiagent systems. IEEE Trans Cybern, 49(5):1592-1604.

[65]Zhou SS, Jahanshahi H, Din Q, et al., 2021. Discrete-time macroeconomic system: bifurcation analysis and synchronization using fuzzy-based activation feedback control. Chaos Sol Fract, 142:110378.

[66]Zou WC, Shi P, Xiang ZR, et al., 2020. Finite-time consensus of second-order switched nonlinear multi-agent systems. IEEE Trans Neur Netw Learn Syst, 31(5):1757-1762.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE