CLC number: TN82
On-line Access: 2023-05-06
Received: 2022-10-16
Revision Accepted: 2023-05-06
Crosschecked: 2023-02-02
Cited: 0
Clicked: 1495
Mianfeng HUANG, Juhua LIU. An array of two periodic leaky-wave antennas with sum and difference beam scanning for application in target detection and tracking[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(4): 567-581.
@article{title="An array of two periodic leaky-wave antennas with sum and difference beam scanning for application in target detection and tracking",
author="Mianfeng HUANG, Juhua LIU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="4",
pages="567-581",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200473"
}
%0 Journal Article
%T An array of two periodic leaky-wave antennas with sum and difference beam scanning for application in target detection and tracking
%A Mianfeng HUANG
%A Juhua LIU
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 4
%P 567-581
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200473
TY - JOUR
T1 - An array of two periodic leaky-wave antennas with sum and difference beam scanning for application in target detection and tracking
A1 - Mianfeng HUANG
A1 - Juhua LIU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 4
SP - 567
EP - 581
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200473
Abstract: An array of two substrate-integrated waveguide (SIW) periodic leaky-wave antennas (LWAs) with sum and difference beam scanning is proposed for application in target detection and tracking. The array is composed of two periodic LWAs with different periods, in which each LWA generates a narrow beam through the n=-1 space harmonic. Due to the two different periods for the two LWAs, two beams with two different directions can be realized, which can be combined into a sum beam when the array is fed in phase or into a difference beam when the array is fed 180° out of phase. The array integrated with 180° hybrid is designed, fabricated, and measured. Measurement results show that the sum beam can reach a gain up to 15.9 dBi and scan from -33.4° to 20.8°. In the scanning range, the direction of the null in the difference beam is consistent with the direction of the sum beam, with the lowest null depth of -40.8 dB. With the excellent performance, the antenna provides an alternative solution with low complexity and low cost for target detection and tracking.
[1]Bialkowski ME, Wang YF, 2010. Wideband microstrip 180° hybrid utilizing ground slots. IEEE Microw Wirel Compon Lett, 20(9):495-497.
[2]Geng YJ, Wang JH, Li YJ, et al., 2018. New design of beam-formed leaky-wave antenna based on substrate integrated waveguide in a confined space. IEEE Trans Antenn Propag, 66(11):6334-6339.
[3]Gil-Martínez A, Poveda-García M, García-Fernández J, et al., 2022a. Direction finding of RFID tags in UHF band using a passive beam-scanning leaky-wave antenna. IEEE J Radio Freq Identif, 6:552-563.
[4]Gil-Martínez A, Poveda-García M, Cañete-Rebenaque D, et al., 2022b. Frequency-scanned monopulse antenna for RSSI-based direction finding of UHF RFID tags. IEEE Antenn Wirel Propag Lett, 21(1):158-162.
[5]Gil-Martínez A, Poveda-García M, López-Pastor JA, et al., 2022c. Wi-Fi direction finding with frequency-scanned antenna and channel-hopping scheme. IEEE Sens J, 22(6):5210-5222.
[6]Gómez-Tornero JL, 2022. Smart leaky-wave antennas for iridescent IoT wireless networks. In: Guo YJ, Ziolkowski RW (Eds.), Antenna and Array Technologies for Future Wireless Ecosystems. Institute of Electrical and Electronics Engineers, Inc., Piscataway, USA, p.119-181.
[7]Hansen RC, 2009. Phased Array Antennas (2nd Ed.). John Wiley & Sons, Inc., Hoboken, USA.
[8]Hansen WW, 1946. Radiating Electromagnetic Wave Guide. US Patent 2402622.
[9]Huang MF, Liu JH, 2022. A null frequency scanning leaky-wave antenna. IEEE Trans Antenn Propag, 70(9):7625-7635.
[10]Kim SG, Chang K, 2003. Low-cost monopulse antenna using bi-directionally-fed microstrip patch array. Electron Lett, 39(20):1428-1429.
[11]Li YJ, Wang JH, 2018. Dual-band leaky-wave antenna based on dual-mode composite microstrip line for microwave and millimeter-wave applications. IEEE Trans Antenn Propag, 66(4):1660-1668.
[12]Li YX, Xue Q, Yung EKN, et al., 2010. The periodic half-width microstrip leaky-wave antenna with a backward to forward scanning capability. IEEE Trans Antenn Propag, 58(3):963-966.
[13]Liu JH, 2021. Periodic leaky-wave antennas based on microstrip-fed slot array with different profile modulations for suppressing open stopband and n=-2 space harmonic. IEEE Trans Antenn Propag, 69(11):7364-7376.
[14]Liu JH, Jackson DR, Long YL, 2011. Modal analysis of dielectric-filled rectangular waveguide with transverse slots. IEEE Trans Antenn Propag, 59(9):3194-3203.
[15]Liu JH, Jackson DR, Long YL, 2012. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots. IEEE Trans Antenn Propag, 60(1):20-29.
[16]Liu JH, Zhou WL, Long YL, 2018. A simple technique for open-stopband suppression in periodic leaky-wave antennas using two nonidentical elements per unit cell. IEEE Trans Antenn Propag, 66(6):2741-2751.
[17]Mailloux R, 2018. Phased Array Antenna Handbook (3rd Ed.). Artech House, Boston, USA.
[18]Menzel W, 1978. A new travelling wave antenna in microstrip. Proc 8th European Microwave Conf, p.302-306.
[19]Milligan TA, 2005. Modern Antenna Design (2nd Ed.). John Wiley & Sons, Inc., Hoboken, USA.
[20]Montaseri N, Mallahzadeh A, 2020. Modulated reactance surfaces with several modulation indices for multibeam leaky-wave antenna design. IEEE Trans Antenn Propag, 68(12):8156-8161.
[21]Oliner AA, Jackson DR, 2007. Leaky-wave antennas. In: Volakis JL (Ed.), Antenna Engineering Handbook (4th Ed.). McGraw-Hill, New York, USA, p.11-2-11-12.
[22]Pan YS, Cheng Y, Dong YD, 2022. Surface plasmon polariton leaky-wave antennas with wideband arbitrary multibeam radiation. IEEE Trans Antenn Propag, 70(2):931-942.
[23]Paulotto S, Baccarelli P, Frezza F, et al., 2009. A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas. IEEE Trans Antenn Propag, 57(7):1894-1906.
[24]Poveda-García M, Gómez-Tornero JL, 2021. Ambiguity resolution in amplitude-monopulse systems using broad-beam patterns. IEEE Antenn Wirel Propag Lett, 20(4):503-507.
[25]Poveda-García M, Cañete-Rebenaque D, Gómez-Tornero JL, 2019. Frequency-scanned monopulse pattern synthesis using leaky-wave antennas for enhanced power-based direction-of-arrival estimation. IEEE Trans Antenn Propag, 67(11):7071-7086.
[26]Poveda-García M, Gómez-Alcaraz A, Cañete-Rebenaque D, et al., 2020. RSSI-based direction-of-departure estimation in Bluetooth low energy using an array of frequency-steered leaky-wave antennas. IEEE Access, 8:9380-9394.
[27]Pozar DM, 2011. Microwave Engineering (4th Ed.). John Wiley & Sons, Inc., New York, USA.
[28]Rahimi MR, Sharawi MS, Wu K, 2021. Higher-order space harmonics in substrate integrated waveguide leaky-wave antennas. IEEE Trans Antenn Propag, 69(8):4332-4346.
[29]Ranjan R, Ghosh J, 2019. SIW-based leaky-wave antenna supporting wide range of beam scanning through broadside. IEEE Antenn Wirel Propag Lett, 18(4):606-610.
[30]Sarkar A, Naqvi AH, Lim S, 2020. (40 to 65) GHz higher order mode microstrip-based dual band dual beam tunable leaky-wave antenna for millimeter wave applications. IEEE Trans Antenn Propag, 68(11):7255-7265.
[31]Scherr S, Ayhan S, Adamiuk G, et al., 2014. Ultrawide bandwidth 180°-hybrid-coupler in planar technology. Int J Microw Sci Technol, 2014:486051.
[32]Singh AK, Paras N, 2022. A dual-beam steering one dimensional periodic leaky-wave antenna for large coverage. AEU-Int J Electron Commun, 145:154086.
[33]Tamura J, Arai H, 2022. Angle-of-arrival estimation using null-steering antennas for simplicity and accuracy enhancement. IEEE Int Symp on Antennas and Propagation and USNC-URSI Radio Science Meeting, p.415-416.
[34]Topak E, Hasch J, Wagner C, et al., 2013. A novel millimeter-wave dual-fed phased array for beam steering. IEEE Trans Microw Theory Tech, 61(8):3140-3147.
[35]Williams JT, Baccarelli P, Paulotto S, et al., 2013. 1-D combline leaky-wave antenna with the open-stopband suppressed: design considerations and comparisons with measurements. IEEE Trans Antenn Propag, 61(9):4484-4492.
[36]Xu SD, Guan DF, Zhang QF, et al., 2019. A wide-angle narrowband leaky-wave antenna based on substrate integrated waveguide-spoof surface plasmon polariton structure. IEEE Antenn Wirel Propag Lett, 18(7):1386-1389.
[37]Zhang CH, Ren J, Du XY, et al., 2021. Dual-beam leaky-wave antenna based on dual-mode spoof surface plasmon polaritons. IEEE Antenn Wirel Propag Lett, 20(10):2008-2012.
[38]Zhang QL, Zhang QF, Liu HW, et al., 2019. Dual-band and dual-polarized leaky-wave antenna based on slotted SIW. IEEE Antenn Wirel Propag Lett, 18(3):507-511.
[39]Zhou WL, Liu JH, Long YL, 2018. Investigation of shorting vias for suppressing the open stopband in an SIW periodic leaky-wave structure. IEEE Trans Microw Theory Tech, 66(6):2936-2945.
[40]Zhou WL, Liu JH, Long YL, 2019. Applications of the open-stopband suppression in various periodic leaky-wave antennas with tapered half-wavelength line. IEEE Trans Antenn Propag, 67(11):6811-6820.
Open peer comments: Debate/Discuss/Question/Opinion
<1>