Full Text:   <2019>

CLC number: O469,O488

On-line Access: 

Received: 2001-10-08

Revision Accepted: 2002-01-23

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3881

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2002 Vol.3 No.5 P.574-578

http://doi.org/10.1631/jzus.2002.0574


Polaronic effect on a bound polaron


Author(s):  RUAN Yong-hong, WU Fu-li, CHEN Qing-hu

Affiliation(s):  Department of Physics, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   ruanyh@css.zju.edu.cn

Key Words:  Bound polaron, Quantum well, Quantum wire, Quantum dot, Ground-state energy


Share this article to: More

RUAN Yong-hong, WU Fu-li, CHEN Qing-hu. Polaronic effect on a bound polaron[J]. Journal of Zhejiang University Science A, 2002, 3(5): 574-578.

@article{title="Polaronic effect on a bound polaron",
author="RUAN Yong-hong, WU Fu-li, CHEN Qing-hu",
journal="Journal of Zhejiang University Science A",
volume="3",
number="5",
pages="574-578",
year="2002",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2002.0574"
}

%0 Journal Article
%T Polaronic effect on a bound polaron
%A RUAN Yong-hong
%A WU Fu-li
%A CHEN Qing-hu
%J Journal of Zhejiang University SCIENCE A
%V 3
%N 5
%P 574-578
%@ 1869-1951
%D 2002
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2002.0574

TY - JOUR
T1 - Polaronic effect on a bound polaron
A1 - RUAN Yong-hong
A1 - WU Fu-li
A1 - CHEN Qing-hu
J0 - Journal of Zhejiang University Science A
VL - 3
IS - 5
SP - 574
EP - 578
%@ 1869-1951
Y1 - 2002
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2002.0574


Abstract: 
Feynman variational path-integral theory was used to obtain the ground-state energy of a polaron in a quantum well in the presence of a Coulomb potential for arbitrary values of the electron-phonon coupling constant α. Numerical and analytical results showed that the energy shift was more sensitive to α than to the Coulomb binding parameter (β) and increased with the decrease of effective quantum well width lZ. It was interesting that due to the electronic confinement in the quasi-2D (quantum well) structures, the lower bound of the strong coupling regime was shifted to smaller values of α. Comparison of the polaron in the quantum well with that in the quantum wire or dot showed that the polaronic effect strengthened with decrease of the confinement dimension.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Chen, Q. H., Ren, Y. H., Jiao, Z. K. Wang, K.L., 1999. Ground state description of bound polarons in parabolic quantum wires. Eur. Phys. J. B, 11:59-63.

[2] Chen, Q. H., Ren, Y. H., Jiao, Z. K., Wang, K.L., 1998. Feynman-Haken path integral approach for polarons in parabolic quantum wires and dots. Phys.Rev. B, 58:16340-16352.

[3] Chen, Q. H., Ren, Y. H., Jiao, Z.K. Wang, K.L., 1998. Two- and three-dimensional polarons in a symmetric quantum dot with arbitrary electron-phonon coupling strength. Phys. Lett. A, 243:66-70.

[4] Chatterjee, A., 1990. Strong-coupling theory for the multidimensional free optical Polaron. Phys. Rev. B, 41:1668-1670.

[5] Chen, Q. H., Wang, Z. B., WU, F. L. Luo, M.B., Ruan, Y.H., Jiao, Z.K., 2001. Varitional path-integral study on bound polarons in parabolic quantum dots and wires. CHIN. PHYS. LETT., 18:668-671.

[6] Feynman, R. P., 1955. Slow electrons in a polar crystal. Phys.Rev., 97:660-665.

[7] Hai, G. Q., Peeter, F. M., Devreese, J. T., 1993. Screening of the electron-phonon interaction in quasi-one-dimensional semiconductor structures. Phys. Rev. B, 48:12016-12022.

[8] Haken, H., 1957. Berechnung der energie des exzitonen-grundzustandes im polaren kristall nach einem neuen variationsverfahren. Z.Phys., 147:323-349.

[9] Kandemir, B. S., Altanhan, T., 1999. Polaron effects on an anisotropic quantum dot in a magnetic field. Phys. Rev. B, 60:4834-4849.

[10] Pokatilov, E. P., Fomin, V. M., Devreese, J. T. et al., 1999. Polarons in an ellipsoidal potential well. Physica E, 4:156-169.

[11] Platzman, P. M., 1962. Ground-state energy of bound polarons. Phys. Rev., 125:1961-1965.

[12] Ren, Y. H., Chen, Q. H., Yu, Y. B. Jiao, Z. K., Wang, S.L., 1998. Ground-state description for polarons in parabolic quantum wells. J. Phys.: Condensed Matter, 10:6565-6572.

[13] Ren, Y. H., Chen, Q. H., Song, J., Yu, Y.B., Jiao, Z.K., 1999. Ground state description of impurity-bound polarons in parabolic quantum wells. Phys. Stat. Sol.(b), 214:327-335.

[14] Senger, R. T., Ercelebi, A., 1999. Quasi-two-dimensional Feynman bipolarons. Phys. Rev. B, 60:10070-10079.

[15] Senger, R. T., Ercelebi, A., 2000. Path-integral approximation on the stability of large bipolarons in quasi-one-dimensional confinement. Phys. Rev. B, 6:6063-6068.

[16] Thilagam, A., Singh, J., 1994. Polarons in quasi-two-dimensional structures. Phys. Rev. B, 49:13583-13588.

[17] Zheng, R. S., Ban, S. L., Liang, X. X., 1994. Effect of interface and bulk optical phonons on polarons in a quantum well. Phys. Rev. B, 49:1796-1801.

[18] Zheng, R. S., Matsuura, M., 1998. Polaron effects on excitons in quantum wells. Phys. Rev. B, 15:1749-1760.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE