CLC number: TN386.1
On-line Access: 2020-01-13
Received: 2019-07-19
Revision Accepted: 2019-11-14
Crosschecked: 2019-12-12
Cited: 0
Clicked: 4985
Citations: Bibtex RefMan EndNote GB/T7714
http://orcid.org/0000-0003-4995-0085
Xiang-lei He, Rui-jie Tang, Feng Yang, Mayameen S. Kadhim, Jie-xin Wang, Yuan Pu, Dan Wang. Zirconia quantum dots for a nonvolatile resistive random access memory device[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(12): 1698-1705.
@article{title="Zirconia quantum dots for a nonvolatile resistive random access memory device",
author="Xiang-lei He, Rui-jie Tang, Feng Yang, Mayameen S. Kadhim, Jie-xin Wang, Yuan Pu, Dan Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="12",
pages="1698-1705",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900363"
}
%0 Journal Article
%T Zirconia quantum dots for a nonvolatile resistive random access memory device
%A Xiang-lei He
%A Rui-jie Tang
%A Feng Yang
%A Mayameen S. Kadhim
%A Jie-xin Wang
%A Yuan Pu
%A Dan Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 12
%P 1698-1705
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900363
TY - JOUR
T1 - Zirconia quantum dots for a nonvolatile resistive random access memory device
A1 - Xiang-lei He
A1 - Rui-jie Tang
A1 - Feng Yang
A1 - Mayameen S. Kadhim
A1 - Jie-xin Wang
A1 - Yuan Pu
A1 - Dan Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 12
SP - 1698
EP - 1705
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900363
Abstract: We propose a nonvolatile resistive random access memory device by employing nanodispersion of zirconia (ZrO2) quantum dots (QDs) for the formation of an active layer. The memory devices comprising a typical sandwich structure of Ag (top)/ZrO2 (active layer)/Ti (bottom) are fabricated using a facile spin-coating method. The optimized device exhibits a high resistance state/low resistance state resistance difference (about 10 Ω), a good cycle performance (the number of cycles larger than 100), and a relatively low conversion current (about 1 μA). Atomic force microscopy and scanning electron microscope are used to observe the surface morphology and stacking state of the ZrO2 active layer. Experimental results show that the ZrO2 active layer is stacked compactly and has a low roughness (Ra=4.49 nm) due to the uniform distribution of the ZrO2 QDs. The conductive mechanism of the Ag/ZrO2/Ti device is analyzed and studied, and the conductive filaments of Ag ions and oxygen vacancies are focused on to clarify the resistive switching memory behavior. This study offers a facile approach of memristors for future electronic applications.
[1]Chua L, 2011. Resistance switching memories are memristors. Appl Phys A, 102(4):765-783.
[2]Craig J, 2018. Cybersecurity research—essential to a successful digital future. Engineering, 4(1):9-10.
[3]Emelyanov AV, Nikiruy KE, Demin VA, et al., 2019. Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications. Microelectron Eng, 215: 110988.
[4]Han PD, Sun B, Li J, et al., 2017. Ag filament induced non-volatile resistive switching memory behaviour in hexagonal MoSe2 nanosheets. J Coll Interf Sci, 505:148-153.
[5]Han WB, Chen XG, Li SF, et al., 2018. A novel non-volatile memory storage system for I/O-intensive applications. Front Inform Technol Electron Eng, 19(10):1291-1302.
[6]He XL, Tang RG, Pu Y, et al., 2019a. High-gravity-hydrolysis approach to transparent nanozirconia/silicone encapsulation materials of light emitting diodes devices for healthy lighting. Nano Energy, 62:1-10.
[7]He XL, Wang Z, Wang D, et al., 2019b. Sub-kilogram-scale synthesis of highly dispersible zirconia nanoparticles for hybrid optical resins. Appl Surf Sci, 491:505-516.
[8]Jiang H, Belkin D, Savel′ev SE, et al., 2017. A novel true random number generator based on a stochastic diffusive memristor. Nat Commun, 8(1):882.
[9]Kadhim MS, Yang F, Sun B, et al., 2018. A resistive switching memory device with a negative differential resistance at room temperature. Appl Phys Lett, 113(5):053502.
[10]Li XM, Tao L, Chen ZF, et al., 2017. Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl Phys Rev, 4(2):021306.
[11]Liang L, Li K, Xiao C, et al., 2015. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J Am Chem Soc, 137(8): 3102-3108.
[12]Liu X, Lu YT, Yu J, et al., 2017. ONFS: a hierarchical hybrid file system based on memory, SSD, and HDD for high performance computers. Front Inform Technol Electron Eng, 18(12):1940-1971.
[13]Lyu MJ, Liu YW, Zhi YD, et al., 2015. Electric-field-driven dual vacancies evolution in ultrathin nanosheets realizing reversible semiconductor to half-metal transition. J Am Chem Soc, 137(47):15043-15048.
[14]Pan F, Gao S, Chen C, et al., 2014. Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater Sci Eng R Rep, 83:1-59.
[15]Panda D, Tseng TY, 2013. Growth, dielectric properties, and memory device applications of ZrO2 thin films. Thin Sol Film, 531:1-20.
[16]Siddiqui GU, Rehman MM, Choi KH, 2017. Resistive switching phenomena induced by the heterostructure composite of ZnSnO3 nanocubes interspersed ZnO nanowires. J Mater Chem C, 5(22):5528-5537.
[17]Sleiman A, Mabrook MF, Nejm RR, et al., 2012. Organic bistable devices utilizing carbon nanotubes embedded in poly (methyl methacrylate). J Appl Phys, 112(2):024509.
[18]Strukov DB, Snider GS, Stewart DR, et al., 2008. The missing memristor found. Nature, 453(7191):80-83.
[19]Sun B, Li HW, Wei LJ, et al., 2014. Hydrothermal synthesis and resistive switching behaviour of WO3/CoWO4 core-shell nanowires. Cryst Eng Comm, 16(42):9891-9895.
[20]Sun B, Zhu SH, Mao SS, et al., 2018a. From dead leaves to sustainable organic resistive switching memory. J Coll Interf Sci, 513:774-778.
[21]Sun B, Zhang XJ, Zhou GD, et al., 2018b. A flexible non-volatile resistive switching memory device based on ZnO film fabricated on a foldable PET substrate. J Coll Interf Sci, 520:19-24.
[22]Vescio G, Martín G, Crespo-Yepes A, et al., 2019. Low-power, high-performance, non-volatile inkjet-printed HfO2-based resistive random access memory: from device to nanoscale characterization. ACS Appl Mater Interf, 11(26):23659-23666.
[23]Vishwanath SK, Kim J, 2016. Resistive switching characteristics of all-solution-based Ag/TiO2/Mo-doped In2O3 devices for non-volatile memory applications. J Mater Chem C, 4(46):10967-10972.
[24]Wan T, Qu B, Du HW, et al., 2018. Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices. J Coll Interf Sci, 512:767-774.
[25]Wang SY, Tsai CH, Lee DY, et al., 2011. Improved resistive switching properties of Ti/ZrO2/Pt memory devices for RRAM application. Microelectron Eng, 88(7):1628-1632.
[26]Wang ZR, Li C, Song WH, et al., 2019. Reinforcement learning with analogue memristor arrays. Nat Electron, 2(3):115-124.
[27]Wu Y, Wei Y, Huang Y, et al., 2017. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res, 10(5):1584-1594.
[28]Xia Y, Zhang C, Wang JX, et al., 2018. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film. Langmuir, 34(23): 6806-6813.
[29]Yan XB, Li YC, Zhao JH, et al., 2016. Roles of grain boundary and oxygen vacancies in Ba0.6Sr0.4TiO3 films for resistive switching device application. Appl Phys Lett, 108(3): 033108.
[30]Yu YM, Yang F, Mao SS, et al., 2018. Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device. Chem Phys Lett, 706:477-482.
[31]Zhang YY, Yang T, Yan XB, et al., 2017. A metal/ Ba0.6Sr0.4TiO3/SiO2/Si single film device for charge trapping memory towards a large memory window. Appl Phys Lett, 110(22):223501.
[32]Zhao H, Dong ZP, Tian H, et al., 2017. Atomically thin femtojoule memristive device. Adv Mater, 29(47): 1703232.
[33]Zhou GD, Sun B, Zhou AK, et al., 2017. A larger nonvolatile bipolar resistive switching memory behaviour fabricated using eggshells. Curr Appl Phys, 17(2):235-239.
[34]Zhou J, Li PG, Zhou YH, et al., 2018. Toward new-generation intelligent manufacturing. Engineering, 4(1):11-20.
Open peer comments: Debate/Discuss/Question/Opinion
<1>