Full Text:   <3291>

CLC number: TK7

On-line Access: 2013-01-02

Received: 2012-06-04

Revision Accepted: 2012-10-24

Crosschecked: 2012-12-10

Cited: 0

Clicked: 7493

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.1 P.25-30

http://doi.org/10.1631/jzus.A1200139


Numerical investigation of the power generation of a ducted composite material marine current turbine


Author(s):  Ji-feng Wang1, Janusz Piechna2, Norbert Mller1

Affiliation(s):  1. Turbomachinery Laboratory, Mechanical Engineering, Michigan State University, East Lansing, MI 48822, USA; more

Corresponding email(s):   jwang94@illinois.edu

Key Words:  Power generation, Composite material, Computational fluid dynamics (CFD), Ducted composite material marine current turbine (CMMCT)


Ji-feng Wang, Janusz Piechna, Norbert Mller. Numerical investigation of the power generation of a ducted composite material marine current turbine[J]. Journal of Zhejiang University Science A, 2013, 14(1): 25-30.

@article{title="Numerical investigation of the power generation of a ducted composite material marine current turbine",
author="Ji-feng Wang, Janusz Piechna, Norbert Mller",
journal="Journal of Zhejiang University Science A",
volume="14",
number="1",
pages="25-30",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200139"
}

%0 Journal Article
%T Numerical investigation of the power generation of a ducted composite material marine current turbine
%A Ji-feng Wang
%A Janusz Piechna
%A Norbert Mller
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 1
%P 25-30
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200139

TY - JOUR
T1 - Numerical investigation of the power generation of a ducted composite material marine current turbine
A1 - Ji-feng Wang
A1 - Janusz Piechna
A1 - Norbert Mller
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 1
SP - 25
EP - 30
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200139


Abstract: 
In the hostile and highly corrosive marine environment, advanced composite materials can be used in marine current turbines due to their high strength-to-weight ratios and excellent resistance to corrosion. A composite material marine current turbine (CMMCT), which has significant advantages over traditional designs, has been developed and investigated numerically. A substantial improvement in turbine performance is achieved by placement of a duct to concentrate the energy. computational fluid dynamics (CFD) results show that the extracted power of a ducted CMMCT can be three to four times the power extracted by a bare turbine of the same turbine area. The results provide an insight into the hydrodynamic design and operation of a CMMCT used to shorten the design period and improve technical performance.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Bahaj, A.S., Myers, L.E., 2003. Fundamentals applicable to the utilisation of marine current turbines for energy production. Renewable Energy, 28(14):2205-2211. 


[2] Bridgeman, J., Parsons, S., 2009. Computational fluid dynamics modelling of flocculation in water treatment: a Review. Engineering Applications of Computational Fluid Mechanics, 3:220-241. 

[3] Dixon, S.L., 1998. Fluid Mechanics, Thermodynamics of Turbomachinery (4th Edition), Butterworth-Heinemann,:28

[4] Gaden, D.L.F., Bibeau, E.L., 2010. A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model. Renewable Energy, 35(6):1152-1158. 


[5] Gilbert, B.L., Foreman, K.M., 1983. Experiments with a diffuser-augmented model wind turbine. Journal of Energy Resources Technology, 105(1):46-53. 


[6] Hansen, M.O.L., Srensen, N.N., Flay, R.G.J., 2000. Effect of placing a diffuser around a wind turbine. Wind Energy, 3(4):207-213. 


[7] Kamat, P.V., 2007. Meeting the clean energy demand: nano-structure architectures for solar energy conversion. The Journal of Physical Chemistry C, 111(7):2834-2860. 


[8] Kirke, B., 2006. Developments in Ducted Water Current Turbines. , Available from ,[Accessed on August, 2010],:

[9] Lawn, C.J., 2003. Optimization of the power output from ducted turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(1):107-117. 


[10] Marsh, G., 2004. Tidal turbines harness the power of the sea. Reinforced Plastics, 48(6):44-47. 


[11] Ponta, F.L., Jacovkis, P.M., 2008. Marine-current power generation by diffuser-augmented floating hydro-turbines. Renewable Energy, 33(4):665-673. 


[12] Setoguchi, T., Shiomi, N., Kaneko, K., 2004. Development of two-way diffuser for fluid energy conversion system. Renewable Energy, 29(10):1757-1771. 


[13] Shaaban, S., Abdel Hafiz, A., 2012. Effect of duct geometry on wells turbine performance. Energy Conversion and Management, 61:51-58. 


[14] Tuo, H., 2012. Thermal-economic analysis of a transcritical Rankine power cycle with reheat enhancement for a low-grade heat source. International Journal of Energy Research, in press,:


[15] Tuo, H., Bielskus, A., Hrnjak, P., 2011. Effect of flash gas bypass on the performance of r134a mobile air-conditioning system with microchannel evaporator. SAE International Journal of Materials and Manufacturing, 4:231-239. 

[16] Wang, J., Mller, N., 2011. Numerical investigation on composite material marine current turbine using CFD. Central European Journal of Engineering, 1(4):334-340. 


[17] Wang, J., Piechna, J., Mller, N., 2011. A novel design and preliminary investigation of composite material marine current turbine. Archive of Mechanical Engineering, LVIII(4):355-366. 


[18] Wang, J., Piechna, J., Yume, J.A.O., Mller, N., 2011. Stability analysis in wound composite material axial impeller. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(5):1162-1172. 


[19] Wang, J., Piechna, J., Mller, N., 2012. A novel design of composite water turbine using CFD. Journal of Hydrodynamics, Ser B, 24(1):11-16. 


[20] Yang, B., Shu, X.W., 2012. Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current. Ocean Engineering, 42:35-46. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE