Full Text:   <4345>

CLC number: TH49

On-line Access: 2013-01-02

Received: 2012-06-05

Revision Accepted: 2012-11-08

Crosschecked: 2012-12-10

Cited: 7

Clicked: 8275

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.1 P.31-37

http://doi.org/10.1631/jzus.A1200140


Investigation of low-cycle fatigue behavior of austenitic stainless steel for cold-stretched pressure vessels*


Author(s):  Cun-jian Miao, Jin-yang Zheng, Xiao-zhe Gao, Ze Huang, A-bin Guo, Du-yi Ye, Li Ma

Affiliation(s):  . Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   jyzh@zju.edu.cn

Key Words:  Cold stretching (CS), Austenitic stainless steel (ASS), Pressure vessels, Low-cycle fatigue (LCF), Cyclic stress response (CSR), Fatigue life, S-N curve


Cun-jian Miao, Jin-yang Zheng, Xiao-zhe Gao, Ze Huang, A-bin Guo, Du-yi Ye, Li Ma. Investigation of low-cycle fatigue behavior of austenitic stainless steel for cold-stretched pressure vessels[J]. Journal of Zhejiang University Science A, 2013, 14(1): 31-37.

@article{title="Investigation of low-cycle fatigue behavior of austenitic stainless steel for cold-stretched pressure vessels",
author="Cun-jian Miao, Jin-yang Zheng, Xiao-zhe Gao, Ze Huang, A-bin Guo, Du-yi Ye, Li Ma",
journal="Journal of Zhejiang University Science A",
volume="14",
number="1",
pages="31-37",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200140"
}

%0 Journal Article
%T Investigation of low-cycle fatigue behavior of austenitic stainless steel for cold-stretched pressure vessels
%A Cun-jian Miao
%A Jin-yang Zheng
%A Xiao-zhe Gao
%A Ze Huang
%A A-bin Guo
%A Du-yi Ye
%A Li Ma
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 1
%P 31-37
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200140

TY - JOUR
T1 - Investigation of low-cycle fatigue behavior of austenitic stainless steel for cold-stretched pressure vessels
A1 - Cun-jian Miao
A1 - Jin-yang Zheng
A1 - Xiao-zhe Gao
A1 - Ze Huang
A1 - A-bin Guo
A1 - Du-yi Ye
A1 - Li Ma
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 1
SP - 31
EP - 37
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200140


Abstract: 
Cold-stretched pressure vessels from austenitic stainless steels (ASS) are widely used for storage and transportation of liquefied gases, and have such advantages as thin wall and light weight. Fatigue is an important concern in these pressure vessels, which are subjected to alternative loads. Even though several codes and standards have guidelines on these pressure vessels, there are no relevant design methods on fatigue failure. To understand the fatigue properties of ASS 1.4301 (equivalents include UNS S30400 and AISI 304) in solution-annealed (SA) and cold-stretched conditions (9% strain level) and the response of fatigue properties to cold stretching (CS), low-cycle fatigue (LCF) tests were performed at room temperature, with total strain amplitudes ranging from ±0.4% to ±0.8%. Martensite transformations were measured during the tests. Comparisons on cyclic stress response, cyclic stress-strain behavior, and fatigue life were carried out between SA and CS materials. Results show that CS reduces the initial hardening stage, but prolongs the softening period in the cyclic stress response. Martensite transformation helps form a stable regime and subsequent secondary hardening. The stresses of monotonic and cyclic stress-strain curves are improved by CS, which leads to a lower plastic strain and a much higher elastic strain. The fatigue resistance of the CS material is better than that of the SA material, which is approximately 1×103 to 2×104 cycles. The s-N curve of the ASME standard for ASS is compared with the fatigue data and is justified to be suitable for the fatigue design of cold-stretched pressure vessels. However, considering the CS material has a better fatigue resistance, the s-N curve will be more conservative. The present study would be helpful in making full use of the advantages of CS to develop a new s-N curve for fatigue design of cold-stretched pressure vessels.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] AS 1210 Supplement 2, 1999. Pressure Vessels-Cold-Stretched Austenitic Stainless Steel Vessels, Standards Association of Australia,:

[2] ASME Boiler & Pressure Vessel Code (BPVC) VIII-1 Appendix, 2011. Cold-Stretching of Austenitic Stainless Steel Pressure Vessels, The American Society of Mechanical Engineers,:

[3] ASME Boiler & Pressure Vessel Code (BPVC), VIII-2, 2010. Rules for Construction of Pressure Vessels, The American Society of Mechanical Engineers,:

[4] Bergengren, Y., Larsson, M., Melander, A., 1995. Fatigue properties of stainless sheet steels in air at room temperature. Materials Science and Technology, 11(12):1275-1280. 


[5] EN 13458-2, 2002. Cryogenic Vessels-Static Vacuum Insulated Vessels Part 2: Design, Fabrication, Inspection and Testing, European Committee for Standardization,:

[6] EN 13530-2, 2002. Cryogenic Vessels-Large Transportable Vacuum Insulated Vessels Part 2: Design, Fabrication, Inspection and Testing, European Committee for Standardization,:

[7] Feltner, C.E., Beardmore, P., 1970.  Strengthening Mechanisms in Fatigue. ASTM,Philadelphia, PA, USA :77-112. 

[8] Ganesh Sundara Raman, S., Padmanabhan, K.A., 1996. Effect of prior cold work on the room-temperature low-cycle fatigue behaviour of AISI 304LN stainless steel. International Journal of Fatigue, 18(2):71-79. 


[9] Hong, S.G., 2004. The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel: influence of dynamic strain aging. International Journal of Fatigue, 26(8):899-910. 


[10] Hong, S.G., Lee, S.B., 2004. Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel. Journal of Nuclear Materials, 328(2-3):232-242. 


[11] Hong, S.G., Yoon, S., Lee, S.B., 2003. The effect of temperature on low-cycle fatigue behavior of prior cold worked 316L stainless steel. International Journal of Fatigue, 25(9-11):1293-1300. 


[12] ISO 20421-1, 2006. Cryogenic Vessels-Large Transportable Vacuum-Insulated Vessels-Part 1-Design, Fabrication, Inspection and Testing, International Standardization Organization,:

[13] ISO 21009-1, 2008. Cryogenic Vessels-Static Vacuum-Insulated Vessels-Part 1-Design, Fabrication, Inspection and Tests, International Standardization Organization,:

[14] Johansson, R., Nordberg, H., 2002. Fatigue Properties of Stainless Steel Strip, AvestaPolarit R&D,:

[15] Laird, C., Wang, Z., Ma, B.T., Chai, H.F., 1989. Low energy dislocation structures produced by cyclic softening. Materials Science and Engineering: A, 113(1):245-257. 


[16] Nakajima, M., Akita, M., Uematsu, Y., Tokaji, K., 2010. Effect of strain-induced martensitic transformation on fatigue behavior of type 304 stainless steel. Procedia Engineering, 2(1):323-330. 


[17] Nakajima, M., Uematsu, Y., Kakiuchib, T., Akita, M., Tokaji, K., 2011. Effect of quantity of martensitic transformation on fatigue behavior in type 304 stainless steel. Procedia Engineering, 10:299-304. 


[18] ODonnell, W.J., ODonnell, T.P., 2005. Proposed New Fatigue Design Curves for Austenitic Stainless Steels, Alloy 600 and Alloy 800. , Proceedings of the ASME Pressure Vessels and Piping Conference,Denver, CO. ASME, USA,1:109-132. 


[19] Rao, K.B.S., Valsan, M., Sandhya, R., Mannan, S.L., Rodriguez, P., 1993. An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type-304 stainless-steel. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 24(4):913-924. 


[20] Srinivasan, V.S., Sandhya, R., Valsan, M., Rao, K.B.S., Mannan, S.L., 2004. Comparative evaluation of strain controlled low cycle fatigue behaviour of solution annealed and prior cold worked 316L(N) stainless steel. International Journal of Fatigue, 26(12):1295-1302. 


[21] Talonen, J., Aspegren, P., Hanninen, H., 2004. Comparison of different methods for measuring strain induced alpha’-martensite content in austenitic steels. Materials Science and Technology, 20(12):1506-1512. 


[22] Zeedijk, H.B., 1977. Cyclic hardening and softening of annealed and 9%-prestrained AISI 304 stainless steel during high strain cycling at room temperature. Metal Science, 11(5):171-176. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE