Full Text:   <4346>

Summary:  <1836>

CLC number: V11; O328

On-line Access: 2013-04-03

Received: 2012-10-26

Revision Accepted: 2013-01-10

Crosschecked: 2013-03-14

Cited: 2

Clicked: 6488

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.4 P.281-291


Track-position and vibration control simulation for strut of the Stewart platform*

Author(s):  Zhao-dong Xu1, Chen-hui Weng1,2

Affiliation(s):  1. MOE Key Laboratory of C&PC Structures, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   xuzhdgyq@seu.edu.cn

Key Words:  Stewart platform, Track-positioning control, Vibration control

Zhao-dong Xu, Chen-hui Weng. Track-position and vibration control simulation for strut of the Stewart platform[J]. Journal of Zhejiang University Science A, 2013, 14(4): 281-291.

@article{title="Track-position and vibration control simulation for strut of the Stewart platform",
author="Zhao-dong Xu, Chen-hui Weng",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Track-position and vibration control simulation for strut of the Stewart platform
%A Zhao-dong Xu
%A Chen-hui Weng
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 4
%P 281-291
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200278

T1 - Track-position and vibration control simulation for strut of the Stewart platform
A1 - Zhao-dong Xu
A1 - Chen-hui Weng
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 4
SP - 281
EP - 291
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200278

Vibrations inherently generated by on-board disturbance sources degrade the performance of the instruments in an on-orbit spacecraft, which have stringent accuracy requirements. The stewart platform enables both track-positioning and vibration control. The strut of the stewart platform is designed as a piezoelectric (PZT) element in series with a voice coil motor (VCM) element and a viscoelastic element. The track-positioning system uses a VCM as the main positioning control driver and a PZT as the positioning compensator. The vibration control system uses the characteristics of struts including active and passive control elements to attenuate the vibration. Simulation results indicate that the stewart platform with the designed struts has good performance in tracking and vibration attenuation with different interference waves.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Anderson, E.H., Fumo, J.P., Erwin, R.S., 2000. Satellite Ultraquiet Isolation Technology Experiment (SUITE). , Proceedings 4th IEEE Aerospace Conference, 299-313. :299-313. 

[2] Bandyopadhyay, S., Ghosal, A., 2009. An algebraic formulation of static isotropy and design of statically isotropic 6-6 Stewart platform manipulators. Mechanism and Machine Theory, 44(7):1360-1370. 

[3] Fraguela, L., Fridman, L., Alexandrov, V.V., 2012. Output integral sliding mode control to stabilize position of a Stewart platform. Journal of the Franklin Institute, 349(4):1526-1542. 

[4] Grewal, K.S., Dixon, R., Pearson, J., 2012. LQG controller design applied to a pneumatic Stewart-Gough platform. International Journal of Automation and Computing, 9(1):45-53. 

[5] Huang, X.H., Horowitz, R., Li, Y.F., 2005. Track-following control with active vibration damping and compensation of a dual-stage servo system. Microsystem Technologies, 11(12):1276-1286. 

[6] Li, Y., Horowitz, R., 2002. Design and testing of track-following controllers for dual-stage servo systems with PZT actuated suspensions. Microsystem Technologies, 8(2-3):194-205. 

[7] Li, Y., Ang, K.H., Chong, G.C.Y., 2006. PID control system analysis and design. IEEE Control Systems Magazine, 26(1):32-41. 

[8] Liu, Y.J., Li, T., Sun, L.N., 2009. Design of a control system for a macro-micro dual-drive high acceleration high precision positioning stage for IC packaging. Science in China Series E: Technological Sciences, 52(7):1858-1865. 

[9] Masterson, R.A., Miller, D.W., Grogan, R.L., 1999. Development of Empirical and Analytical Reaction Wheel Disturbance Models. , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 40th AIAA/ASME/AHS Adaptive Structure Forum and AIAA Forum on Non-deterministic Approaches, 12-15. :12-15. 

[10] Mukherjee, P.B., Dasgupta, B., Mallik, A.K., 2007. Dynamic stability index and vibration analysis of a flexible Stewart platform. Journal of Sound and Vibration, 307(3-5):495-512. 

[11] Mura, A., 2012. Multi-dofs MEMS displacement sensors based on the Stewart platform theory. Microsystem Technologies, 18(5):575-579. 

[12] Neat, G.W., Melody, J.W., Lurie, B.J., 1998. Vibration attenuation approach for space borne optical interferometers. IEEE Transactions on Control System Technology, 6(6):689-700. 

[13] Preumont, A., Horodinca, M., Romanescu, I., de Marneffe, B., Avraam, M., Deraemaeker, A., Bossens, F., Abu Hanieh, A., 2007. A six-axis single-stage active vibration isolator based on Stewart platform. Journal of Sound and Vibration, 300(3-5):644-661. 

[14] Stewart, D., 1965. A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers, 180:371-386. 

[15] Sullivan, L.A., Erwin, R.S., Denoyer, K.K., 2000. Experiences with smart structures for on-orbit vibration isolation. SPIE, 3991:122-130. 

[16] Wang, Z.L., He, J.J., Gu, H., 2011. Forward kinematics analysis of a six degree-of-freedom Stewart platform based on independent component analysis and Nelder-Mead algorithm. IEEE Transactions on Systems, Man, and Cybernetics A, 41(3):589-597. 

[17] Xu, Z.D., Wang, D.X., Wu, K.Y., 2011. Simulation of stochastic wind field for large complex structures based on modified Fourier spectrum. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(3):238-246. 

[18] Zhang, Z., Cui, L., Huang, H., 2011. A Real-time Linux Based Controller for Active Vibration Isolation Stewart Platform and the Experiment. , 30th Chinese Control Conference, Beijing, 2429-2434. :2429-2434. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE