Full Text:   <2706>

CLC number: TV11

On-line Access: 2013-04-30

Received: 2012-11-16

Revision Accepted: 2013-03-11

Crosschecked: 2013-04-19

Cited: 3

Clicked: 4910

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.5 P.353-361


Canonical correlation analysis of hydrological response and soil erosion under moving rainfall*

Author(s):  Qi-hua Ran, Zhi-nan Shi, Yue-ping Xu

Affiliation(s):  . Institute of Hydrology and Water Resources, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   yuepingxu@zju.edu.cn

Key Words:  Moving rainfall, Runoff, Sediment erosion, Canonical correlation analysis (CCA)

Qi-hua Ran, Zhi-nan Shi, Yue-ping Xu. Canonical correlation analysis of hydrological response and soil erosion under moving rainfall[J]. Journal of Zhejiang University Science A, 2013, 14(5): 353-361.

@article{title="Canonical correlation analysis of hydrological response and soil erosion under moving rainfall",
author="Qi-hua Ran, Zhi-nan Shi, Yue-ping Xu",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Canonical correlation analysis of hydrological response and soil erosion under moving rainfall
%A Qi-hua Ran
%A Zhi-nan Shi
%A Yue-ping Xu
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 5
%P 353-361
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200306

T1 - Canonical correlation analysis of hydrological response and soil erosion under moving rainfall
A1 - Qi-hua Ran
A1 - Zhi-nan Shi
A1 - Yue-ping Xu
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 5
SP - 353
EP - 361
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200306

The impacts of rainfall direction on the degree of hydrological response to rainfall properties were investigated using comparative rainfall-runoff experiments on a small-scale slope (4 m×1 m), as well as canonical correlation analysis (CCA). The results of the CCA, based on the observed data showed that, under conditions of both upstream and downstream rainfall movements, the hydrological process can be divided into instantaneous and cumulative responses, for which the driving forces are rainfall intensity and total rainfall, and coupling with splash erosion and wash erosion, respectively. The response of peak runoff (P r) to intensity-dominated rainfall action appeared to be the most significant, and also runoff (R) to rainfall-dominated action, both for upstream- and downstream-moving conditions. Furthermore, the responses of sediment erosion in downstream-moving condition were more significant than those in upstream-moving condition. This study indicated that a CCA between rainfall and hydrological characteristics is effective for further exploring the rainfall-runoff-erosion mechanism under conditions of moving rainfall, especially for the downstream movement condition.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Arthur, E., Cornelis, W.M., Vermang, J., De Rocker, E., 2011. Effect of compost on erodibility of loamy sand under simulated rainfall. Catena, 85(1):67-72. 

[2] Assouline, S., Ben-Hur, M., 2006. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena, 66(3):211-220. 

[3] Carmi, G., Berliner, P., 2008. The effect of soil crust on the generation of runoff on small plots in an arid environment. Catena, 74(1):37-42. 

[4] de Lima, J.L.M.P., Singh, V.P., 2003. Laboratory experiments on the influence of storm movement on overland flow. Physics and Chemistry of the Earth Parts A/B/C, 28(6-7):277-282. 

[5] de Lima, J.L.M.P., Tavares, P., Singh, V.P., de Lima, M.I.P., 2009. Investigating the nonlinear response of soil loss to storm direction using a circular soil flume. Geoderma, 152(1-2):9-15. 

[6] Dessu, S.B., Melesse, A.M., 2012. Modelling the rainfall-runoff process of the Mara River basin using the Soil and Water Assessment Tool. Hydrological Processes, 26(26):4038-4049. 

[7] Foster, G.R., Meyer, L.D., Onstad, C.A., 1977. An erosion equation derived from basic erosion principles. Transactions of the ASAE, 20(4):678-682. 

[8] He, Z.G., Tayfur, G., Ran, Q.H., Weng, H.X., 2013. Modeling pollutant transport in overland flow over non-planar and non-homogenous infiltrating surfaces. Journal of Zhejiang University-SCIENCE A (Applied Physics and Engineering), 14(2):110-119. 

[9] Montgomery, D.R., Dietrich, W.E., 2002. Runoff generation in a steep, soil-mantled landscape. Water Resources Research, 38(9):1168-1174. 

[10] Nunes, J.P., de Lima, J.L.M.P., Singh, V.P., de Lima, M.I.P., Vieira, G.N., 2006. Numerical modeling of surface runoff and erosion due to moving rainstorms at the drainage basin scale. Journal of Hydrology, 330(3-4):709-720. 

[11] Pappas, E.A., Huang, C.H., Bonta, J.V., 2011. Do upslope impervious surfaces impact the run-on/runoff relationship?. Journal of Hydrologic Engineering, 16(4):345-350. 

[12] Ran, Q.H., Fu, Q., Su, D.Y., Zhao, J.J., Xu, Y.P., 2009. Impact of rainfall-movement direction on hillslope runoff generation. Journal of Zhejiang University (Engineering Science), (in Chinese),43(10):1915-1922. 

[13] Ran, Q.H., Su, D.Y., Li, P., He, Z.G., 2011. Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion. Journal of Hydrology, 424-425(6):99-111. 

[14] Ran, Q.H., Shi, Z.N., Zhao, J.J., Xu, Y.P., 2012. Impact of moving rainfall on soil erosion based on crust characteristics. Tsinghua Science and Technology, 52(6):821-829. 

[15] Ran, Q.H., Shi, Z.N., Fu, X.D., Wang, G.Q., Xu, Y.P., 2012. Impact of rainfall movement on soil crust development. International Journal of Sediment Research, 27(4):439-450. 

[16] Ran, Q.H., Su, D.Y., Qian, Q., Fu, X.D., Wang, G.Q., He, Z.G., 2012. Physically-based approach to analyze rainfall-triggered landslide using hydraulic gradient as slide direction. Journal of Zhejiang University-SCIENCE A (Applied Physics and Engineering), 13(12):943-957. 

[17] Rice, R.M., 1972. Using canonical correlation for hydrological predictions. Hydrological Sciences Bulletin, 17(3):315-321. 

[18] Robinson, D.A., Woodun, J.K., 2008. An experimental study of crust development on chalk downland soils and their impact on runoff and erosion. European Journal of Soil Science, 59(4):784-798. 

[19] Seo, Y., Schmidt, A.R., 2012. The effect of rainstorm movement on urban drainage network runoff hydrographs. Hydrological Processes, 26(25):3830-3841. 

[20] Seo, Y., Schmidt, A.R., Sivapalan, M., 2012. Effect of storm movement on flood peaks: Analysis framework based on characteristic timescales. Water Resources Research, 48(5):1-12. 

[21] Singh, V.P., 2002. Effect of the duration and direction of storm movement on infiltrating planar flow with full areal coverage. Hydrological Processes, 16(7):1479-1511. 

[22] Singh, V.P., 2005. Effects of storm direction and duration on infiltrating planar flow with partial coverage. Hydrological Processes, 19(4):969-992. 

[23] Wang, W., Adali, T., Emge, D., 2012. Novel approach for target detection and classification using canonical correlation analysis. Journal of Signal Processing Systems, 68(3):379-390. 

[24] Wischmeier, W.H., Smith, D.D., 1978.  Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. US Department of Agriculture,Washington DC :

[25] Yen, B.C., Chow, V.T., 1969. A laboratory study of surface runoff due to moving rainstorms. Water Resources Research, 5(5):989-1006. 

[26] Zhang, W.T., 2004.  Advanced Statistic Analysis of SPSS. (in Chinese), Higher Education Press,Beijing, China :286-287. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE