Full Text:   <2989>

Summary:  <2097>

CLC number: TV125

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-02-10

Cited: 2

Clicked: 5403

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yue-ping Xu

http://orcid.org/0000-0002-3259-5593

Qian Zhu

http://orcid.org/0000-0002-2646-2604

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.3 P.194-203

http://doi.org/10.1631/jzus.A1400123


Qualitative and quantitative uncertainties in regional rainfall frequency analysis


Author(s):  Qian Zhu, Xiao Xu, Chao Gao, Qi-hua Ran, Yue-ping Xu

Affiliation(s):  Institute of Hydrology and Water Resources, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   yuepingxu@zju.edu.cn

Key Words:  Qualitative uncertainty, Uncertainty analysis, Numeral unite spread assessment pedigree (NUSAP) method, Regional rainfall frequency analysis, Pedigree matrix, Diagnostic diagram


Qian Zhu, Xiao Xu, Chao Gao, Qi-hua Ran, Yue-ping Xu. Qualitative and quantitative uncertainties in regional rainfall frequency analysis[J]. Journal of Zhejiang University Science A, 2015, 16(3): 194-203.

@article{title="Qualitative and quantitative uncertainties in regional rainfall frequency analysis",
author="Qian Zhu, Xiao Xu, Chao Gao, Qi-hua Ran, Yue-ping Xu",
journal="Journal of Zhejiang University Science A",
volume="16",
number="3",
pages="194-203",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400123"
}

%0 Journal Article
%T Qualitative and quantitative uncertainties in regional rainfall frequency analysis
%A Qian Zhu
%A Xiao Xu
%A Chao Gao
%A Qi-hua Ran
%A Yue-ping Xu
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 3
%P 194-203
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400123

TY - JOUR
T1 - Qualitative and quantitative uncertainties in regional rainfall frequency analysis
A1 - Qian Zhu
A1 - Xiao Xu
A1 - Chao Gao
A1 - Qi-hua Ran
A1 - Yue-ping Xu
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 3
SP - 194
EP - 203
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400123


Abstract: 
Uncertainty exists widely in hydrological analysis, and this makes the process of uncertainty assessment very important for making robust decisions. In this study, uncertainty sources in regional rainfall frequency analysis are identified for the first time. The numeral unite spread assessment pedigree (NUSAP) method is introduced and is first employed to quantify qualitative uncertainty in regional rainfall frequency analysis. A pedigree matrix is particularly designed for regional rainfall frequency analysis, by which the qualitative uncertainty can be quantified. Finally, the qualitative and quantitative uncertainties are combined in an uncertainty diagnostic diagram, which makes the uncertainty evaluation results more intuitive. From the integrated diagnostic diagram, it can be determined that the uncertainty caused by the precipitation data is the smallest, and the uncertainty from different grouping methods is the largest. For the downstream sub-region, a generalized extreme value (GEV) distribution is better than a generalized logistic (GLO) distribution; for the south sub-region, a Pearson type III (PE3) distribution is the better choice; and for the north sub-region, GEV is more appropriate.

How to take qualitative uncertainty into account is a very difficult task in hydrological analysis. This manuscript identified the key uncertainty sources in regional rainfall frequency analysis, and introduced NUSAP Method to quantify qualitative and quantitative uncertainties simultaneously. Meanwhile, a Pedigree matrix is particularly designed for regional frequency analysis and by which the qualitative uncertainty can be quantified in a reasonable way. Finally, a diagnostic diagram is used to combine the quantitative and qualitative uncertainty. The final results demonstrated the effectiveness of NUSAP Method in evaluating both the quantitative and qualitative uncertainty in regional rainfall frequency analysis. This study presented a novel and useful application of the use of NUSAP Method in regional frequency analysis. Such method is recommended for further use in hydrological analysis and decision making under uncertainty for water management.

区域降雨频率分析中的质量和数量不确定性分析

目的:通过引进NUSAP方法量化区域降雨频率分析不确定性来源中质量方面的不确定性,并结合数量方面的不确定性,分析这些不确定性对降雨频率分析的影响,为水资源风险决策和水利工程设计等提供更好的指导。
创新点:总结区域降雨频率分析中的不确定性来源,并在区域频率分析中引进NUSAP方法用以量化其质量不确定性,针对区域频率分析提出Pedigree矩阵。
方法:1. 选取区域频率分析中三个主要不确定性来源,即降雨测量不确定性、水文分区不确定性和分布线型的不确定性;2. 提出针对区域频率分析的评价依据Pedigree矩阵,量化区域频率分析中的质量不确定性;3. 将质量和数量两类不确定性结合在不确定性诊断图中,综合评估区域频率分析中的质量不确定和数量不确定性。
结论:NUSAP方法可以有效地量化区域降雨频率分析中的质量不确定性,并通过不确定性诊断图将质量不确定和数量不确定性很好地结合起来,为水资源风险决策和水利工程设计等提供了直观的方案。

关键词:质量不确定性;不确定性分析;NUSAP方法;区域频率分析;Pedigree矩阵;不确定性诊断图

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Baeriswyl, P.A., Rebetez, M., 1997. Regionalization of precipitation in Switzerland by means of principal component analysis. Theoretical and Applied Climatology, 58(1-2):31-41.

[2]BOHZJ (Bureau of hydrology, Zhejiang Province), 2003. Atlas of Storms Statistical Parameters for Zhejiang Province Hangzhou, Zhejiang. BOHZJ, Hangzhou (in Chinese).

[3]Bouda, M., Rousseau, A.N., Konan, B., et al., 2012. Bayesian uncertainty analysis of the distributed hydrological model HYDROTEL. Journal of Hydrologic Engineering, 17(9):1021-1032.

[4]Castellarin, A., Burn, D., Brath, A., 2001. Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. Journal of Hydrology, 241(3-4):270-285.

[5]Delsman, J.R., Essink, G.H.P.O, Beven, K.J., et al., 2013. Uncertainty estimation of end-member mixing using generalized likelihood uncertainty estimation (GLUE), applied in a lowland catchment. Water Resources Research, 49(8):4792-4806.

[6]Farsadnia, F., Kamrood, M.R., Nia, A.M., et al., 2014. Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps. Journal of Hydrology, 509:387-397.

[7]Fowler, H., Kilsby, C., 2003. A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. International Journal of Climatology, 23(11):1313-1334.

[8]Funtowicz, S.O., Ravetz, J.R., 1990. Uncertainty and Quality in Science for Policy. Springer Science & Business Media.

[9]Hosking, J.R.M., Wallis, J.R., 2005. Regional Frequency Analysis: an Approach Based on L-moments. Cambridge University Press, UK.

[10]Houska, T., Multsch, S., Kraft, P., et al., 2013. Monte Carlo based calibration and uncertainty analysis of a coupled plant growth and hydrological model. Biogeosciences Discussions, 10(12):19509-19540.

[11]Ilorme, F., Griffis, V.W., 2013. A novel procedure for delineation of hydrologically homogeneous regions and the classification of ungauged sites for design flood estimation. Journal of Hydrology, 492:151-162.

[12]Jeremiah, E., Sisson, S., Marshall, L., et al., 2011. Bayesian calibration and uncertainty analysis of hydrological models: a comparison of adaptive metropolis and sequential Monte Carlo samplers. Water Resources Research, 47(7):W07547.

[13]Jin, X., Xu, C.Y., Zhang, Q., et al., 2010. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology, 383(3-4):147-155.

[14]Li, L., Xia, J., Xu, C.Y., et al., 2010. Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models. Journal of Hydrology, 390(3-4):210-221.

[15]Lin, G.F., Chen, L.H., 2006. Identification of homogeneous regions for regional frequency analysis using the self-organizing map. Journal of Hydrology, 324(1-4):1-9.

[16]Michele, C.D., Rosso, R., 2001. Uncertainty assessment of regionalized flood frequency estimates. Journal of Hydrologic Engineering, 6(6):453-459.

[17]Norbiato, D., Borga, M., Sangati, M., et al., 2007. Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. Journal of Hydrology, 345(3-4):149-166.

[18]Parent, E., Bernier, J., 2003. Bayesian POT modeling for historical data. Journal of Hydrology, 274(1-4):95-108.

[19]Ramachandra Rao, A., Srinivas, V., 2006. Regionalization of watersheds by hybrid-cluster analysis. Journal of Hydrology, 318(1-4):37-56.

[20]Reis, D.S.Jr., Stedinger, J.R., 2005. Bayesian MCMC flood frequency analysis with historical information. Journal of Hydrology, 313(1-2):97-116.

[21]Saf, B., 2010. Assessment of the effects of discordant sites on regional flood frequency analysis. Journal of Hydrology, 380(3-4):362-375.

[22]SL21-90, 1991. Precipitation Observation Criteria. The Ministry of Water Resources of the People’s Republic of China (in Chinese).

[23]van der Sluijs, J.P., Craye, M., Funtowicz, S., et al., 2005. Combining quantitative and qualitative measures of uncertainty in model-based environmental assessment: the NUSAP system. Risk Analysis, 25(2):481-492.

[24]Wiltshire, S., 1986. Regional flood frequency analysis I: homogeneity statistics. Hydrological Sciences Journal, 31(3):321-333.

[25]Xu, Y., Xu, X., Huang, Y., et al., 2011. Uncertainty assessment of flood frequency analysis in Hanjiang Basin (I): uncertainty in discharge measurement stage. Journal of Basic Science and Engineering, 19(S1):177-183 (in Chinese).

[26]Zaman, M.A., Rahman, A., Haddad, K., 2012. Regional flood frequency analysis in arid regions: a case study for Australia. Journal of Hydrology, 475:74-83.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE