Full Text:   <3791>

CLC number: TU528

On-line Access: 2013-07-01

Received: 2013-03-02

Revision Accepted: 2013-06-03

Crosschecked: 2013-06-21

Cited: 2

Clicked: 6202

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.7 P.459-468

http://doi.org/10.1631/jzus.A1300067


Sulphate attack resistance of high-performance concrete under compressive loading*


Author(s):  Hui Xu1, Yu-xi Zhao1, Lei Cui2, Bi Xu3

Affiliation(s):  1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   yxzhao@zju.edu.cn

Key Words:  Sulphate attack resistance, High-performance concrete (HPC), Compressive loading


Share this article to: More |Next Article >>>

Hui Xu, Yu-xi Zhao, Lei Cui, Bi Xu. Sulphate attack resistance of high-performance concrete under compressive loading[J]. Journal of Zhejiang University Science A, 2013, 14(7): 459-468.

@article{title="Sulphate attack resistance of high-performance concrete under compressive loading",
author="Hui Xu, Yu-xi Zhao, Lei Cui, Bi Xu",
journal="Journal of Zhejiang University Science A",
volume="14",
number="7",
pages="459-468",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300067"
}

%0 Journal Article
%T Sulphate attack resistance of high-performance concrete under compressive loading
%A Hui Xu
%A Yu-xi Zhao
%A Lei Cui
%A Bi Xu
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 7
%P 459-468
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300067

TY - JOUR
T1 - Sulphate attack resistance of high-performance concrete under compressive loading
A1 - Hui Xu
A1 - Yu-xi Zhao
A1 - Lei Cui
A1 - Bi Xu
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 7
SP - 459
EP - 468
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300067


Abstract: 
In this paper, an experimental study on the sulphate attack resistance of high-performance concrete (HPC) with two different water-to-binder ratios (w/b) under compressive loading is presented. The sulphate concentration, compressive strength, and the mass change in the HPC specimens were determined for immersion in a Na2SO4 solution over different durations under external compressive loading by self-regulating loading equipment. The effects of the compressive stress, the w/b ratio, and the Na2SO4 solution concentration on the HPC sulphate attack resistance under compressive loading were analysed. The results showed that the HPC sulphate attack resistance under compressive loading was closely related to the stress level, the w/b ratio, and the Na2SO4 solution concentration. Applying a 0.3 stress ratio for the compressive loading or reducing the w/b ratio clearly improved the HPC sulphate attack resistance, whereas applying a 0.6 stress ratio for the compressive loading or exposing the HPC to a more concentrated Na2SO4 solution accelerated the sulphate attack and HPC deterioration.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Ahmad, I., Azhar, S., 2004. Temperature variation in high slump drilled shaft concrete and its effect on slump loss. Cement and Concrete Research, 34(2):207-217. 


[2] Al-Dulaijan, S.U., Maslehuddin, M., Al-Zahrani, M.M., Sharif, A.M., Shameem, M., Ibrahim, M., 2003. Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate. Cement and Concrete Composites, 25(4-5):429-437. 


[3] Baghabra Al-Amoudi, O.S., 2002. Attack on plain and blended cements exposed to aggressive sulfate environments. Cement and Concrete Composites, 24(3-4):305-316. 


[4] Bassuoni, M.T., Nehdi, M.L., 2009. Durability of self-consolidating concrete to sulfate attack under combined cyclic environments and flexural loading. Cement and Concrete Research, 39(3):206-226. 


[5] Bonakdar, A., Mobasher, B., 2010. Multi-parameter study of external sulfate attack in blended cement materials. Construction and Building Materials, 24(1):61-70. 


[6] Chen, J., Jiang, M., 2009. Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulfate erosion. Construction and Building Materials, 23(2):812-816. 


[7] Chen, S., Zheng, M., Wang, B.G., 2009. Study of high-performance concrete subjected to coupled action from sodium sulfate solution and alternating stresses. Journal of Materials in Civil Engineering, 21(4):148-153. 


[8] Collepardi, M., 2003. A state-of-the-art review on delayed ettringite attack on concrete. Cement and Concrete Composites, 25(4-5):401-407. 


[9] Dawood, E.T., Ramli, M., 2012. Durability of high strength flowing concrete with hybrid fibers. Construction and Building Materials, 35:521-530. 


[10] Detwiler, R., Taylor, P., Powers, L., 2000. Assessment of concrete in sulfate soils. Journal of Performance of Constructed Facilities, 14(3):89-96. 


[11] Francois, R., Maso, J.C., 1988. Effect of damage in reinforced concrete on carbonation or chloride penetration. Cement and Concrete Research, 18(6):961-970. 


[12] Gao, J., Yu, Z., Song, L., Wang, T., Wei, S.W., 2013. Durability of concrete exposed to sulfate attack under flexural loading and drying-wetting cycles. Construction and Building Materials, 39(7-9):33-38. 


[13] Gonzles, M.A., Irassar, E.F., 1997. Ettringite formation in low C3A Portland cement exposed to sodium sulfate solution. Cement and Concrete Research, 27(7):1061-1072. 


[14] Idiart, A.E., Lpez, C.M., Carol, G., 2011. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model. Cement and Concrete Composites, 33(3):411-423. 


[15] Jin, Z., Sun, W., Jiang, J., 2008. Damage of concrete attacked by sulfate and sustained loading. Journal of Southeast University, 24(3):69-73. 

[16] Kockal, N.U., Turker, F., 2007. Effect of environmental conditions on the properties of concretes with different cement types. Construction and Building Materials, 21(3):634-645. 


[17] Lee, S.T., Moon, H.Y., Swamy, R.N., 2005. Sulfate attack and role of silica fume in resisting strength loss. Cement and Concrete Composites, 27(1):65-76. 


[18] Leemann, A., Loser, R., 2011. Analysis of concrete in a vertical ventilation shaft exposed to sulfate-containing groundwater for 45 years. Cement and Concrete Composites, 33(1):74-83. 


[19] Liang, Y.N., Yuan, Y.S., 2004. Detection of sulfate attacking on concrete with ultrasound. Concrete, (in Chinese),178(8):15-17. 

[20] Lorente, S., Yssorche-Cubaynes, M., Auger, J., 2011. Sulfate transfer through concrete: Migration and diffusion results. Cement & Concrete Composites, 33(7):735-741. 


[21] Marchand, J., Samson, E., Maltais, Y., Beaudoin, J.J., 2002. Theoretical analysis of the effect of weak sodium sulfate solution on the durability of concrete. Cement and Concrete Composites, 24(3-4):317-329. 


[22] Mbessa, M., Pra, J., 2001. Durability of high-strength concrete in ammonium sulfate solution. Cement and Concrete Research, 31(8):1227-1231. 


[23] Monteiro, P.J.M., Kurtis, K.E., 2003. Time to failure for concrete exposed to severe sulfate attack. Cement and Concrete Research, 33(7):987-993. 


[24] Neville, A., 2004. The confused world of sulfate attack on concrete. Cement and Concrete Research, 34(8):1275-1296. 


[25] Park, Y.S., Soon, J.K., Lee, J.H., Shin, Y.S., 1999. Strength deterioration of high strength concrete in sulfate environment. Cement and Concrete Research, 29(9):1397-1402. 


[26] Rodriguez-Navarro, C., Doehne, E., Sebastian, E., 2000. How does sodium sulfate crystallize Implications for the decay and testing of building materials. Cement and Concrete Research, 30(10):1527-1534. 


[27] Santhanam, M., Cohen, M.D., Olek, J., 2003. Effect of gypsum formation on the performance of cement mortars during external sulphate attack. Cement and Concrete Research, 33(3):325-332. 


[28] Sezer, G..., Ramyar, K., Karasu, B., Gktepe, B., Alper Sezer, A., 2008. Image analysis of sulfate attack on hardened cement paste. Materials and Design, 29(1):224-231. 


[29] Shannag, M.J., Shaia, H.A., 2003. Sulfate resistance of high-performance concrete. Cement and Concrete Composites, 25(3):363-369. 


[30] Sun, C., Chen, J., Zhu, J., Zhang, M., Ye, J., 2013. A new diffusion model of sulfate ions in concrete. Construction and Building Materials, 39(7-9):39-45. 


[31] Tian, B., Cohen, M.D., 2000. Does gypsum formation during sulfate attack on concrete lead to expansion. Cement and Concrete Research, 30(1):117-123. 


[32] Torii, K., Taniguchi, K., Kawamura, M., 1995. Sulfate resistance of high fly ash content concrete. Cement and Concrete Research, 25(4):759-768. 


[33] Wang, H.L., Dong, Y.S., Sun, X.Y., Jin, W.L., 2012. Damage mechanism of concrete deteriorated by sulfate attack in wet-dry cycle environment. Journal of Zhejiang University (Engineering Science), (in Chinese),46(7):1255-1261. 

[34] Yang, D., Luo, J., 2012. The damage of concrete under flexural loading and salt solution. Construction and Building Materials, 36:129-134. 


[35] Yao, Z., Cheng, H., Rong, C., 2007. Research on stress and strength of high strength reinforced concrete drilling shaft lining in thick top soils. Journal of China University of Mining & Technology, 17(3):432-435. 


[36] Yu, Z.X., Gao, J.M., Song, R.G., 2012. Damage process of concrete exposed to sulfate attack under drying-wetting cycles and loading. Journal of Southeast University (Natural Science Edition), (in Chinese),42(3):487-491. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE