Full Text:   <4794>

CLC number: P743

On-line Access: 2013-08-01

Received: 2013-03-17

Revision Accepted: 2013-05-20

Crosschecked: 2013-07-10

Cited: 4

Clicked: 9053

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.8 P.574-582


Three-dimensional numerical simulation of a vertical axis tidal turbine using the two-way fluid structure interaction approach*

Author(s):  Syed-shah Khalid, Liang Zhang, Xue-wei Zhang, Ke Sun

Affiliation(s):  . Deepwater Engineering Research Center, Harbin Engineering University, Heilongjiang 150001, China

Corresponding email(s):   shahkhalidshah@yahoo.com

Key Words:  Vertical axis tidal turbine, Renewable energy, Two-way fluid structure interaction (FSI)

Syed-shah Khalid, Liang Zhang, Xue-wei Zhang, Ke Sun. Three-dimensional numerical simulation of a vertical axis tidal turbine using the two-way fluid structure interaction approach[J]. Journal of Zhejiang University Science A, 2013, 14(8): 574-582.

@article{title="Three-dimensional numerical simulation of a vertical axis tidal turbine using the two-way fluid structure interaction approach",
author="Syed-shah Khalid, Liang Zhang, Xue-wei Zhang, Ke Sun",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Three-dimensional numerical simulation of a vertical axis tidal turbine using the two-way fluid structure interaction approach
%A Syed-shah Khalid
%A Liang Zhang
%A Xue-wei Zhang
%A Ke Sun
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 8
%P 574-582
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300082

T1 - Three-dimensional numerical simulation of a vertical axis tidal turbine using the two-way fluid structure interaction approach
A1 - Syed-shah Khalid
A1 - Liang Zhang
A1 - Xue-wei Zhang
A1 - Ke Sun
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 8
SP - 574
EP - 582
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300082

The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (VATT) rotor, subjected to spatially varying inflow. Moreover, this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations. The blade’s deformation for each new time step is considered in transient two-way FSI analysis, to make the design more reliable. Usually this is not considered in routine one-way FSI simulations. A rotor with four blades and 4-m diameter was modeled and numerically analyzed. We observed that two-way FSI, utilizing the strongly coupled method, was impossible for a complex model; and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench, as given in ANSYS-WORKBENCH, helped case examples 22 and 23, by giving an error when the solution was run. To make the method possible and reduce the computational power, a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results. Consequently, the results indicating a two-way transient FSI analysis is a time- and resource-consuming job, but with our proposed technique we can reduce the computational time. The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI. Similarly, fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results. Additionally, this study shows that, using the proposed method we can perform coupled simulation with simple multi-node PCs (core i5).

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] ANSYS CFX Release 13.0 Help, . Convergence Results and RMS (4.2), Mesh Deformation (1.2.2) and Region of Motion Specified ( Mechanical User Guide, Documentation ANSYS Europe, Ltd,:

[2] Benra, F.K., 2006. Numerical and experimental investigation on the flow induced oscillations of a single blade pump impeller. Journal of Fluids Engineering, 128(4):783-793. 

[3] Benra, F.K., Dohmen, H.J., Pei, J., Schuster, S., Wan, B., 2011. A comparison of one-way & two-way coupling methods for numerical analysis of fluid-structure interactions. Journal of Applied Mathematics, Article ID 853560,:

[4] Calcagno, G., Salvatore, F., Greco, L., 2006. Experimental and Numerical Investigation of an Innovative Technology for Marine Current Exploitation: the Kobold Turbine. , Proceedings of the ISOPE Conference, San Francisco, USA, 323:323

[5] Casadei, F., Halleux, J.P., Sala, A., Chille, F., 2001. Transient fluid structure interaction algorithms for large industrial applications. Journal of Computer Methods in Applied Mechanics & Engineering, 190(24-25):3081-3110. 

[6] Dang, H., Yang, Z., Li, Y., 2010. Accelerated loosely-coupled CFD/CSD method for nonlinear static aeroelastic analysis. Journal of Aerospace Science and Technology, 14(4):250-258. 

[7] Dobrev, I., Massouh, F., 2007. Fluid-structure Interaction in the Case of a Wind Turbine Rotor. , 18me Congress Franais de Mcanique, Grenoble, 27-31. :27-31. 

[8] Fabio, N., 2010. , International Summer School on Mathematical Modeling & Computation LSEC, Beijing, China, :

[9] Garelli, L., Paz, R.R., Storti, M.A., 2010. Fluid structure interaction of the start-up of a rocket engine nozzle. Journal of Computers and Fluids, 39(7):1208-1218. 

[10] Hubner, B., Walhorn, E., Dinkler, D., 2004. A monolithic approach to fluid structure interaction using space time finite elements. Journal of Computer Methods in Applied Mechanics and Engineering, 193(23-26):2087-2104. 

[11] Hyman, J.M., Knapp, R., Scovel, J.C., 1992. High order finite volume approximations of differential operators on non-uniform grids. Journal of Physica, D60:112-138. 

[12] Holger, W., 2008. Hybrid methods for fluid-structure interaction problems in aeroelasticity. Meshfree Methods for Partial Differential Equations IV, 65:335-358. 

[13] Hbner, B., Seidel, U., Roth, S., 2010. Application of Fluid-structure Coupling to Predict the Dynamic Behavior of Turbine Components. , 25th Symposium on Hydro Machinery & Systems, Romania, :

[14] Jo, C.H., Kim, D.Y., Rho, Y.H., Lee, K.H., Johnstone, C., 2012. FSI analysis of deformation along offshore pile structure for tidal current power. Journal of Renewable Energy, 54:248-252. 

[15] Kim, Y.G., Kim, K.C., 2006. Analysis of fluid structure interaction on 100kW-HAWT-blade. The Korean Society of Visualization, 4(1):41-46. 

[16] Li, Y., Calisal, S.M., 2010. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Journal of Renew Energy, 35(10):2325-2334. 

[17] Li, Z.C., 2011.  Numerical Simulation and Experimental Study on Hydrodynamic Performances of Vertical Axis Tidal Turbine. PhD Thesis, (in Chinese), Harbin Engineering University,China :

[18] Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598-1605. 

[19] Ouahiba, G., Aziz, H., Anas, S., 2008. Fluid structure interaction of wind turbine airfoils. Journal of Wind Engineering, 32(6):539-557. 

[20] Paraschivoiu, I., 2002.  Wind Turbine Design. Polytechnic International Press,UK :

[21] Ramji, K., Wei, S., 2004. Fluid-structure interaction for aeroelastic applications. Progress in Aerospace Sciences, 40(8):535-558. 

[22] Turnoak, S.R., Wright, A.M., 2000. Directly coupled fluid structural model of a ship rudder behind a propeller. Journal of Marine Structure, 13(1):53-72. 

[23] Vaassen, J.M., DeVincenzo, P., Hirsch, C., 2011. Strong Coupling Algorithm to Solve Fluid Structure-interaction Problems with a Staggered Approach. , Proceedings of the 7th European Symposium on Aerothermodynamics, the Netherlands, :

[24] Wei, S.H., Zhang, L.J., Yan, Y.Z., 2009. Research on Aero-elasticity of Horizontal Axis Wind Turbine by a Fluid-structure Coupling Numerical Method. , Proceedings of the IEEE International Conference on Sustainable Power Generation & Supply, Nanjing, China, 1-5. :1-5. 

[25] Zanette, J., Imbault, D., Tourabi, A., 2010. A design methodology for cross flow water turbines. Journal of Renew Energy, 35(5):997-1009. 

[26] Zhang, L., Wang, L.B., Li, F.L., 2004. Study on stream tube models for prediction performance of vertical-axis variable-pitch turbine for tidal current energy conversion. Journal of Harbin Engineering University, 25(3):261-266. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE