Full Text:   <6990>

Summary:  <2327>

CLC number: TU41

On-line Access: 2014-01-03

Received: 2013-06-24

Revision Accepted: 2013-09-21

Crosschecked: 2013-12-20

Cited: 18

Clicked: 17148

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.1 P.1-21

http://doi.org/10.1631/jzus.A1300217


The state-of-the-art centrifuge modelling of geotechnical problems at HKUST§ *


Author(s):  Charles W. W. Ng1,2

Affiliation(s):  1. Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing 210098, China; more

Corresponding email(s):   charles.ng@ust.hk

Key Words:  Centrifuge, Building tilt, Tunnel, Excavation, Slope


Share this article to: More |Next Article >>>

Charles W. W. Ng. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University Science A, 2014, 15(1): 1-21.

@article{title="The state-of-the-art centrifuge modelling of geotechnical problems at HKUST",
author="Charles W. W. Ng",
journal="Journal of Zhejiang University Science A",
volume="15",
number="1",
pages="1-21",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300217"
}

%0 Journal Article
%T The state-of-the-art centrifuge modelling of geotechnical problems at HKUST
%A Charles W. W. Ng
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 1
%P 1-21
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300217

TY - JOUR
T1 - The state-of-the-art centrifuge modelling of geotechnical problems at HKUST
A1 - Charles W. W. Ng
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 1
SP - 1
EP - 21
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300217


Abstract: 
Geotechnical centrifuge modelling is an advanced physical modelling technique for simulating and studying geotechnical problems. It provides physical data for investigating mechanisms of deformation and failure and for validating analytical and numerical methods. Due to its reliability, time and cost effectiveness, centrifuge modelling has often been the preferred experimental method for addressing complex geotechnical problems. In this ZENG Guo-xi Lecture, the kinematics, fundamental principles and principal applications of geotechnical centrifuge modelling are introduced. The use of the state-of-the-art geotechnical centrifuge at the Hong Kong University of Science and Technology (HKUST), China to investigate four types of complex geotechnical problems is reported. The four geotechnical problems include correction of building tilt, effect of tunnel collapse on an existing tunnel, excavation effect on pile capacity and liquefied flow and non-liquefied slide of loose fill slopes. By reporting major findings and new insights from these four types of centrifuge tests, it is hoped to illustrate the role of state-of-the-art geotechnical centrifuge modelling in advancing the scientific knowledge of geotechnical problems.

香港科技大学土工离心机先进模拟技术在岩土工程中的应用

研究目的:采用香港科技大学的先进土工离心模拟技术来研究和解决复杂的岩土工程问题。
创新方法:1.验证竖向钻孔开挖技术(应力释放)对建筑纠偏的有效性;2.研究隧道坍塌对其邻近既有隧道的影响;3.研究基坑开挖对坑中既有桩基承载力的影响;4.揭示不同颗粒级配形成的土坡在水位上升和动力荷载作用下的破坏模式。
研究手段:1.用香港科技大学全球首台离心机中的双向震动台(见图5)模拟地震荷载对土坡的影响;2.用香港科技大学全球第二台四轴机械手(见图6)模拟不停机情况下的钻孔开挖。
重要结论:1.竖向钻孔开挖技术能有效地对建筑物进行纠偏;2.隧道坍塌会对其邻近既有隧道产生很大的附加弯矩,尤其是拱脚处的弯矩可增加多达228%;3.基坑开挖后坑中桩基的承载力取决于桩土接触面的粗糙程度,粗糙的桩-土接触面在剪切过程中倾向于发生剪胀,这会增大桩周围土的水平土压力,从而使桩基承载力增加;4.当水位上升时,颗粒均匀,级配差的松散砂土坡容易发生静态液化;相反地,颗粒级配好的松散砂土坡(风化土)不太可能发生静态液化,而只是发生整体滑动破坏;5.离心机双向震动台实验显示松散的风化岩土坡在0.3g的地震加速度作用下不会发生液化,可以抵御香港地区的地震荷载(0.08g到0.11g)。

关键词:土工离心机;建筑纠偏;隧道坍塌;深基坑工程;土坡静态液化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] BS1377, 1990.  Methods of Tests for Soils for Civil Engineering Purposes. British Standards Institution,London :

[2] Bucky, P.B., 1931. Use of models for the study of mining problems. American Institution of Mining and Metallurgical Engineers, 425:3-28. 

[3] Cai, Z.Y., 2001.  A Comprehensive Study of State-dependent Dilatancy and Its Application in Shear Band Formation Analysis. PhD Thesis, The Hong Kong University of Science and Technology,Hong Kong, China :

[4] Castro, G., 1969. Liquefaction of Sands. Harvard Soil Mechanics Series, No. 81, Pierce Hall,:

[5] Cheney, J.A., 1988. American literature review on geome-chanical centrifuge modelling 1931-1984.  . Centrifuges in Soil Mechanics,Balkema, Rotterdam :77-88. 

[6] Craig, W.H., 1995. Geotechnical centrifuge: past, present and future. Geotechnical Centrifuge Technology, :1-18. 

[7] DeJong, J.T., Frost, J.D., 2002. Physical evidence of shear banding at granular-continuum interfaces. , Proc. 15th ASCE Engineering Mechanics Conference, Columbia University, New York, NY, 8:8

[8] Fioravante, V., 2002. On the shaft friction modelling of non-displacement piles in sand. Soils and Foundations, 42(2):23-33. 


[9] Garnier, J., Gaudin, C., Springman, S.M., 2007. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics, 7(3):1-23. 


[10] Hoek, E., 1965. The design of a centrifuge for the simulation of gravitational force fields in mine models. Journal of South African Institute of Mining and Metallurgy, 65(9):455-487. 

[11] HSE (Health and Safety Executive), 2000.  The collapse of NATM tunnels at heathrow airport. A Report on the Investigation by the Health and Safety Executive into the Collapse of New Austrian Tunnelling Method (NATM) Tunnels at the Central Terminal Area of Heathrow Airport on 20/21 October 1994. HSE Books,UK :

[12] Joseph, P.J., Einetein, H.H., Whiltman, R.V., 1988.  A literature review of geotechnical centrifuge modelling with particular emphasis on rock mechanics. Massachusetts Institute of Technology,USA :

[13] Kimura, T., 1998. Development of geotechnical centrifuge in Japan. Proc, , Centrifuge, Tokyo, 23-32. :23-32. 

[14] Kishida, H., Uesugi, M., 1987. Tests of the interface between sand and steel in the simple shear apparatus. Gotechnique, 37(1):45-52. 


[15] Ko, H.Y., 1988. Summary of the state-of-the-art in centrifuge model testing. Centrifuge in Soil Mechanics, :11-28. 

[16] Kramer, S.T., 1996.  Geotechnical Earthquake Engineering. Prentice Hall,New Jersey :

[17] Lei, G.H., Shi, J.Y., 2003. Physical meanings of kinematics in centrifuge modelling technique. Rock and Soil Mechanics, 24(2):188-193. 

[18] Mindlin, R.D., 1936. Force at a point in the interior of a semi-infinite solid. Journal of Applied Physics, 7(5):195-202. 


[19] Ng, C.W.W., 2005. Invited country report: failure mechanisms and stabilisation of loose fill slopes in Hong Kong. , Proceedings of International Seminar on Slope Disasters in Geomorphological/Geotechnical Engineering, Osaka, 71-84. :71-84. 

[20] Ng, C.W.W., 2007. Liquefied flow and non-liquefied slide of loose fill slopes. , Proceedings of 13th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Kolkata, Allied Publishers Private Ltd, :

[21] Ng, C.W.W., 2008. Invited special lecture: deformation and failure mechanisms of loose and dense fill slopes with and without soil nails. , Proceedings of 10th International Symposium on Landslides and Engineered Slopes, Xian, China, 159-177. :159-177. 


[22] Ng, C.W.W., 2009. What is static liquefaction failure of loose fill slope. The 1st Italian Workshop on Landslides, Napoli, Italy, 1:91-102. 

[23] Ng, C.W.W., Xu, G.M., 2003. In-flight centrifuge modelling of vertical relief boring technique. Chinese Journal of Geotechnical Engineering, (in Chinese),25(3):299-303. 

[24] Ng, C.W.W., Van Laak, P., Tang, W.H., 2001. The Hong Kong geotechnical centrifuge. , Proceedings of 3rd International Conference on Soft Soil Engineering, Hong Kong, 225-230. :225-230. 

[25] Ng, C.W.W., Yau, T.L.Y., Li, J.H.M., 2001. New failure load criterion for large diameter bored piles in weathered geomaterials. Journal of Geotechnical and Geoenvironmental Engineering, 127(6):488-498. 


[26] Ng, C.W.W., Van Laak, P.A., Zhang, L.M., 2002. Development of a four-axis robotic manipulator for centrifuge modelling at HKUST. , Proceedings of International Conference on Physical Modelling in Geotechnics, St. Johns Newfoundland, Canada, 71-76. :71-76. 

[27] Ng, C.W.W., Zhou, X.W., Chung, J.K.H., 2003. Centrifuge modelling of multiple tunnel interaction in shallow ground. , Proceedings of 13th European Conference on Soil Mechanics and Geotechnical Engineering, Prague, Czech Republic, 759-762. :759-762. 

[28] Ng, C.W.W., Simons, N.E., Menzies, B.K., 2004.  A Short Course in Soil-structure Engineering of Deep Foundations, Excavations and Tunnels. Thomas Telford,London :424

[29] Ng, C.W.W., Li, X.S., Van Laak, P.A., 2004. Centrifuge modelling of loose fill embankment subjected to uni-axial and bi-axial earthquakes. Soil Dynamics and Earthquake Engineering, 24(4):305-318. 


[30] Ng, C.W.W., Pun, W.K., Kwok, S.S.K., 2007. Centrifuge modelling in engineering practice in Hong Kong. , Geotechnical Division Annual Seminar, The Hong Kong Institution of Engineers, Hong Kong, 55-68. :55-68. 

[31] Ng, C.W.W., Boonyarak, T., Man, D., 2013. Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels. Canadian Geotechnical Journal, 50(9):935-946. 


[32] Ng, C.W.W., Shi, J.W., Hong, Y., 2013. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand. Canadian Geotechnical Journal, 50(8):874-888. 


[33] Panek, L.A., 1949. Design of safe and economical structures. Transactions of the American Institute of Mining and Metallurgical Engineers, 181:371-375. 

[34] Ramberg, H., 1968. Instability of layered systems in the field of gravity, I. Physics of the Earth and Planetary Interiors, 1(7):427-447. 


[35] Shen, C.K., Li, X.S., Ng, C.W.W., 1998. Development of a geotechnical centrifuge in Hong Kong. , Proceedings of Centrifuge, Tokyo, 13-18. :13-18. 

[36] Taylor, R.N., 1995.  Geotechnical Centrifuge Technology. Blackie Academic and Professional,London :

[37] Terracina, F., 1962. Foundations of the Leaning Tower of Pisa. Gotechnique, 12(4):336-339. 

[38] Zhang, M., 2006.  Centrifuge Modelling of Potentially Liquefiable Loose Fill Slopes with and without Soil Nails. PhD Thesis, The Hong Kong University of Science and Technology,Hong Kong, China :

[39] Zhang, M., Ng, C.W.W., 2003.  Interim factual testing report I-SG30 & SR30. The Hong Kong University of Science and Technology,Hong Kong, China :

[40] Zhang, M., Ng, C.W.W., Take, W.A., 2006. The role and mechanism of soil nails in liquefied loose sand fill slopes. , Proceedings of 6th International Conference Physical Modelling in Geotechnics, Hong Kong, 391-396. :391-396. 

[41] Zheng, G., Peng, S.Y., Diao, Y., 2010. In-flight investigation of excavation effects on smooth single piles. , Proceedings of 7th International Conference on Physical Modelling in Geotechnics, 847-852. :847-852. 

[42] Zheng, G., Peng, S.Y., Ng, C.W.W., 2012. Excavation effects on pile behaviour and capacity. Canadian Geotechnical Journal, 49(12):1347-1356. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE