Full Text:   <3539>

Summary:  <2146>

CLC number: X52

On-line Access: 2014-08-04

Received: 2014-04-30

Revision Accepted: 2014-06-29

Crosschecked: 2014-07-18

Cited: 3

Clicked: 6536

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.8 P.624-633


Dispersion and aggregation of single-walled carbon nanotubes in aqueous solutions of anionic surfactants*

Author(s):  Kun Yang1,2, Zi-li Yi1,2, Qing-feng Jing1,2, Dao-hui Lin1,2

Affiliation(s):  1. Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   kyang@zju.edu.cn

Key Words:  Dispersion, Aggregation, Single-walled carbon nanotubes (SWCNTs), Anionic surfactant, Sonication

Kun Yang, Zi-li Yi, Qing-feng Jing, Dao-hui Lin. Dispersion and aggregation of single-walled carbon nanotubes in aqueous solutions of anionic surfactants[J]. Journal of Zhejiang University Science A, 2014, 15(8): 624-633.

@article{title="Dispersion and aggregation of single-walled carbon nanotubes in aqueous solutions of anionic surfactants",
author="Kun Yang, Zi-li Yi, Qing-feng Jing, Dao-hui Lin",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Dispersion and aggregation of single-walled carbon nanotubes in aqueous solutions of anionic surfactants
%A Kun Yang
%A Zi-li Yi
%A Qing-feng Jing
%A Dao-hui Lin
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 8
%P 624-633
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400113

T1 - Dispersion and aggregation of single-walled carbon nanotubes in aqueous solutions of anionic surfactants
A1 - Kun Yang
A1 - Zi-li Yi
A1 - Qing-feng Jing
A1 - Dao-hui Lin
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 8
SP - 624
EP - 633
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400113

Understanding the dispersion and aggregation of carbon nanotubes (CNTs) in the aqueous environment are critical for the fate, bioavailability, and the environment and health risk assessment of them because the better suspended CNTs display a higher mobility and could transfer to a longer distance in the environment to possibly pose greater ecological and environmental risks. In this study, we have found that bulk single-walled carbon nanotubes (SWCNTs) could not be dispersed and stably suspended in water and sodium dodecylbenzene sulfonate (SDBS) solution by shaking at 140 r/min, although they could be stably suspended in SDBS solution by sonication. Even through sonication, SWCNTs suspended in SDBS solution do not remain stable at the presence of environmentally relevant cations (e.g., Na+, K+, Ca2+, and Mg2+) after dilution. These observations suggest that SWCNTs will not travel long distances in significant concentrations in the natural environment to pose great ecological and environmental risks. We also observed that the re-aggregation of suspended SWCNTs in the presence of cations was dependent on the SDBS concentration rather than the SWCNT concentration in the suspension. Both SDBS and sonication play important roles in the dispersion of SWCNTs, with sonication breaking down large aggregates of SWCNTs, while SDBS adsorbed on the SWCNTs inhibits the coagulation and aggregation by steric/electrostatic repulsion to maintain the stability of the suspension in water.


研究方法:通过比较震荡扰动(模拟环境条件)和超声辅助两种分散悬浮方式及有无添加十二烷基苯磺酸钠(SDBS)阴离子表面活性剂条件下的单壁碳纳米管在水中的悬浮性能(图1),研究单壁碳纳米管能否在环境中被分散悬浮。通过研究Na+,K+,Ca2+和Mg2+等环境主要阳离子存在时SDBS稳定悬浮的单壁碳纳米管悬浮性能及与SDBS浓度等的相关性 (图6和8),探明稳定悬浮的单壁碳纳米管能否在环境稀释过程中和环境阳离子存在下保持稳定悬浮。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Bai, Y.C., Lin, D.H., Wu, F.C., 2010. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions. Chemosphere, 79(4):362-367. 

[2] Bouchard, D., Zhang, W., Powell, T., 2012. Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations. Environmental Science & Technology, 46(8):4458-4465. 

[3] Broecker, W.S., Peng, T.H., Beng, Z., 1982.  Tracers in the Sea. Eldigio Press,New York :

[4] Cheng, J.P., Flahaut, E., Cheng, S.H., 2007. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environmental Toxicology and Chemistry, 26(4):708-716. 

[5] Dunphy Guzmn, K.A., Taylor, M.R., Banfield, J.F., 2006. Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environmental Science & Technology, 40(5):1401-1407. 

[6] Gottschalk, F., Nowack, B., 2011. The release of engineered nanomaterials to the environment. Journal of Environmental Monitoring, 13(5):1145-1155. 

[7] Hyung, H., Kim, J.H., 2008. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environmental Science & Technology, 42(12):4416-4421. 

[8] Hyung, H., Fortner, J.D., Hughes, J.B., 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environmental Science & Technology, 41(1):179-184. 

[9] Islam, M.F., Rojas, E., Bergey, D.M., 2003. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 3(2):269-273. 

[10] Jia, G., Wang, H., Yan, L., 2005. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology, 39(5):1378-1383. 

[11] Lam, C.W., James, J.T., McCluskey, R., 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sciences, 77(1):126-134. 

[12] Lecoanet, H.F., Botterro, J.Y., Wiesner, M.R., 2004. Laboratory assessment of the mobility of nanomaterials in porous media. Environmental Science & Technology, 38(19):5164-5169. 

[13] Lin, D.H., Xing, B.S., 2008. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environmental Science & Technology, 42(16):5917-5923. 

[14] Lin, D.H., Liu, N., Yang, K., 2009. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon, 47(12):2875-2882. 

[15] Lin, D.H., Liu, N., Yang, K., 2010. Different stabilities of multiwalled carbon nanotubes in fresh surface water samples. Environmental Pollution, 158(5):1270-1274. 

[16] Liu, J., Rinzler, A.G., Dai, H.J., 1998. Fullerene pipes. Science, 280(5367):1253-1256. 

[17] Matarredona, O., Rhoads, H., Li, Z., 2003. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. The Journal of Physical Chemistry B, 107(48):13357-13367. 

[18] Matthijs, E., Holt, M.S., Kiewiet, A., 1999. Environmental monitoring for linear alkylbenzene sulfonate, alcohol ethoxylate, alcohol ethoxy sulfate, alcohol sulfate, and soap. Environmental Toxicology and Chemistry, 18(11):2634-2644. 

[19] McRae, S.G., 1988.  Practical Pedology: Studying Soils in the Field. Ellis Horwood Ltd.,Chichester :

[20] Saleh, N.B., Pfefferle, L.D., Elimelech, M., 2008. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environmental Science & Technology, 42(21):7963-7969. 

[21] Saleh, N.B., Pfefferle, L.D., Elimelech, M., 2010. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environmental Science & Technology, 44(7):2412-2418. 

[22] Smith, B., Wepasnick, K., Schrote, K.E., 2009. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure-property relationship. Langmuir, 25(17):9767-9776. 

[23] Strano, M.S., Moore, V.C., Miller, M.K., 2003. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology, 3(1):81-86. 

[24] Yang, K., Xing, B.S., 2007. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environmental Pollution, 145(2):529-537. 

[25] Yang, K., Xing, B.S., 2010. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Reviews, 110(10):5989-6008. 

[26] Yang, K., Zhu, L.Z., Xing, B.S., 2006. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science & Technology, 40(6):1855-1861. 

[27] Yang, K., Zhu, L.Z., Xing, B.S., 2007. Sorption of sodium dodecylbenzene sulfonate by montmorillonite. Environmental Pollution, 145(2):571-576. 

[28] Yang, K., Yi, Z.L., Jing, Q.F., 2013. Sonication assisted dispersion of carbon nanotubes in the aqueous solution of the anionic surfactant SDBS: the role of sonication energy. Chinese Science Bulletin, 58(17):2082-2092. 

[29] Yudasaka, M., Fan, J., Miyawaki, J., 2005. Studies on the adsorption of organic materials inside thick carbon nanotubes. The Journal of Physical Chemistry B, 109(18):8909-8913. 

[30] Zajic, J.E., Seffens, W., Panchal, C., 1983. Biosurfactants. Critical Reviews in Biotechnology, 1(2):87-107. 

[31] Zhang, X.T., Zhang, J., Wang, R.M., 2004. Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon, 42(8-9):1455-1461. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE