Full Text:   <2636>

Summary:  <1460>

CLC number: TQ032.4

On-line Access: 2016-12-06

Received: 2015-12-09

Revision Accepted: 2016-06-16

Crosschecked: 2016-11-24

Cited: 2

Clicked: 3758

Citations:  Bibtex RefMan EndNote GB/T7714


Umsa Jameel


Ming-qiao Zhu


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.12 P.1000-1012


Green epoxidation of cyclooctene with molecular oxygen over an ecofriendly heterogeneous polyoxometalate-gold catalyst Au/BW11/Al2O3

Author(s):  Umsa Jameel, Ming-qiao Zhu, Xin-zhi Chen, Yi Liu, Zhang-fa Tong

Affiliation(s):  Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zhumingqiao@zju.edu.cn

Key Words:  Nano gold, Polyoxometalates (POMs), POM-gold catalyst, Cyclooctene epoxidation, Molecular oxygen

Share this article to: More <<< Previous Article|

Umsa Jameel, Ming-qiao Zhu, Xin-zhi Chen, Yi Liu, Zhang-fa Tong. Green epoxidation of cyclooctene with molecular oxygen over an ecofriendly heterogeneous polyoxometalate-gold catalyst Au/BW11/Al2O3[J]. Journal of Zhejiang University Science A, 2016, 17(12): 1000-1012.

@article{title="Green epoxidation of cyclooctene with molecular oxygen over an ecofriendly heterogeneous polyoxometalate-gold catalyst Au/BW11/Al2O3",
author="Umsa Jameel, Ming-qiao Zhu, Xin-zhi Chen, Yi Liu, Zhang-fa Tong",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Green epoxidation of cyclooctene with molecular oxygen over an ecofriendly heterogeneous polyoxometalate-gold catalyst Au/BW11/Al2O3
%A Umsa Jameel
%A Ming-qiao Zhu
%A Xin-zhi Chen
%A Yi Liu
%A Zhang-fa Tong
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 12
%P 1000-1012
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500332

T1 - Green epoxidation of cyclooctene with molecular oxygen over an ecofriendly heterogeneous polyoxometalate-gold catalyst Au/BW11/Al2O3
A1 - Umsa Jameel
A1 - Ming-qiao Zhu
A1 - Xin-zhi Chen
A1 - Yi Liu
A1 - Zhang-fa Tong
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 12
SP - 1000
EP - 1012
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500332

An ecofriendly heterogeneous polyoxometalate (POM)-gold catalyst Au/BW11/Al2O3 was synthesized and used for solvent-free epoxidation of cyclooctene under mild reaction conditions using molecular oxygen as an oxidant and t-butyl hydroperoxide (TBHP) as an initiator. The catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), induced coupled plasma optical emission spectrometry (ICP-OES), and Brunauer-Emmett-Teller (BET). The catalyst showed good conversion and high selectivity without use of solvents or environmentally harmful oxidants. Moreover, the catalyst is recyclable up to three cycles with no significant loss in selectivity towards epoxide.

This manuscript describes the synthesis of catalytic system which consisting with nano gold-polyoxometalate catalyst supported on the surface of neutral alumina. The resulting Au/BW11/Al2O3 was very effective for solvent-free epoxidation of cyclooctene under mild reaction conditions using molecular oxygen as an oxidant and TBHP as an initiator.


创新点:1. 把纳米金颗粒和多金属氧酸盐(即BW11)结合并负载在固体载体上制备出了一种新型复合催化剂材料;2. 采用分子氧作为氧化剂而不是传统的有机酸或者过氧酸;3. 在温和条件下可获得良好的转化率和较高的环氧化物选择性;4. 催化反应体系未使用有机溶剂;5. 催化剂稳定并可循环使用。
方法:1. 根据文献中所述方法制备BW11;2. 采用标准沉积沉淀法合成Au/Al2O3;3. 采用湿式浸渍法制备催化剂Au/BW11/Al2O3;4. 环辛烯环氧化使用叔丁基过氧化氢(TBHP)作为引发剂,氧气作为氧化剂,在高压反应釜中进行反应;5. 采用扫描电镜和X射线衍射等对催化剂进行表征。
结论:1. 提高焙烧温度可改善催化反应性能;2. 随着催化剂量增加到0.2 g,转化率也随之增加(图8);3. 反应的最佳温度为80 °C(表1);4. 随着反应时间的增加直到24 h,转化率逐渐增加,环氧化物选择性也增加到约87%(图9);5. 催化剂可适用于多种氧化剂(表2);6. 无溶剂下转化率和选择性相对较大(表3);7. 催化剂可以有效活化分子氧和环辛烯;8. 催化剂可以再生,在使用三次后,其活性损失不大。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Álvaro, M., Aprile, C., Corma, A., et al., 2007. Influence of radical initiators in gold catalysis: evidence supporting trapping of radicals derived from azobis (isobutyronitrile) by gold halides. Journal of Catalysis, 245(1):249-252.

[2]Bäckvall, J.E., 2004. Modern Oxidation Methods. Wiley-VCH, Weinheim, Germany.

[3]Bawaked, S., Dummer, N.F., Dimitratos, N., et al., 2009. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. Green Chemistry, 11(7):1037-1044.

[4]Bawaked, S., He, Q., Dummer, N.F., et al., 2011a. Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catalysis Science and Technology, 1(5):747-759.

[5]Bawaked, S., Dummer, N.F., Bethell, D., et al., 2011b. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts: an investigation of catalyst re-use. Green Chemistry, 13(1):127-134.

[6]Brulé, E., de Miguel, Y.R., 2006. Supported metalloporphyrin catalysts for alkene epoxidation. Organic & Biomolecular Chemistry, 4(4):599-609.

[7]Bujak, P., Bartczak, P., Polanski, J., 2012. Highly efficient room-temperature oxidation of cyclohexene and D-glucose over nanogold Au/SiO2 in water. Journal of Catalysis, 295:15-21.

[8]Cai, Z., Zhu, M., Chen, J., et al., 2010. Solvent-free oxidation of cyclohexene over catalysts Au/OMS-2 and Au/ La-OMS-2 with molecular oxygen. Catalysis Communications, 12(3):197-201.

[9]Coronado, E., Gimenez-Saiz, C., Gomez-Garcia, C.J., 2005. Recent advances in polyoxometalate-containing molecular conductors. Coordination Chemistry Reviews, 249(17-18):1776-1796.

[10]Cronin, L., Muller, A., 2012. From serendipity to design of polyoxometalates at the nanoscale, aesthetic beauty and applications. Chemical Society Reviews, 41(22):7333-7334.

[11]Dhakshinamoorthy, A., Alvaro, M., Garcia, H., 2012. Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289:259-265.

[12]Dimitratos, N., Lopez-Sanchez, J.A., Hutchings, G.J., 2012. Selective liquid phase oxidation with supported metal nanoparticles. Chemical Science, 3(1):20-44.

[13]Du, J., Lai, X.Y., Yang, N.L., et al., 2011. Hierarchically ordered macro−mesoporous TiO2−graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano, 5(1):590-596.

[14]Endo, T., Sudo, A., 2009. Development and application of novel ring-opening polymerizations to functional networked polymers. Journal of Polymer Science Part A: Polymer Chemistry, 47(19):4847-4858.

[15]Gan, L.H., Wang, Y.D., Hao, Z.X., et al., 2005. Preparation of TiO2/SiO2 aerogels by non-supercritical drying method and their photocatalytic activity for degradation of pyridine. Chinese Journal of Chemical Engineering, 13(6):758-763.

[16]Gómez-Romero, P.G., Cuentas-Gallegos, K., Lira-Cantú, M., et al., 2005. Hybrid nanocomposite materials for energy storage and conversion applications. Journal of Materials Science, 40(6):1423-1428.

[17]Habibi, D., Faraji, A.R., Arshadi, M., et al., 2013. Characterization and catalytic activity of a novel Fe nano-catalyst as efficient heterogeneous catalyst for selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol. Journal of Molecular Catalysis A: Chemical, 372:90-99.

[18]Han, X., Huang, H., Zhang, H., et al., 2013. Au/SiOx composite thin film as catalyst for solvent-free hydrocarbon oxidation. Materials Research Bulletin, 48(10):3717-3722.

[19]Hereijgers, B.P.C., Weckhuysen, B.M., 2010. Aerobic oxidation of cyclohexane by gold-based catalysts: new mechanistic insight by thorough product analysis. Journal of Catalysis, 270(1):16-25.

[20]Hill, C.L., 2007. Progress and challenges in polyoxometalate-based catalysis and catalytic materials chemistry. Journal of Molecular Catalysis A: Chemical, 262(1-2):2-6.

[21]Hill, C.L., Prosser-McCartha, C.M., 1995. Homogeneous catalysis by transition metal oxygen anion clusters. Coordination Chemistry Reviews, 143:407-455.

[22]Hu, H., Zhu, M., Jameel, U., et al., 2015. Novel tungsten-based catalyst for epoxidation of cyclohexene. CIESC Journal, 66(8):3007-3013.

[23]Huber, S., Cokoja, M., Kühn, F.E., 2014. Historical landmarks of the application of molecular transition metal catalysts for olefin epoxidation. Journal of Organometallic Chemistry, 751:25-32.

[24]Hughes, M.D., Xu, Y.J., Jenkins, P., et al., 2005. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature, 437(7062):1132-1135.

[25]Jacobsen, E.N., Pfaltz, A., Yamamoto, H., 1999. Comprehensive Asymmetric Catalysis. Springer-Verlag Berlin Heidelberg, Germany.

[26]Jameel, U., Zhu, M., Chen, X., et al., 2016. Recent progress of synthesis and applications in polyoxometalate and nanogold hybrid materials. Journal of Materials Science, 51(5):2181-2198.

[27]Kozhevnikov, I.V., 1998. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chemical Reviews, 98(1):171-198.

[28]Lignier, P., Morfin, F., Mangematin, S., et al., 2007. Stereoselective stilbene epoxidation over supported gold-based catalysts. Chemical Communications, (2):186-188.

[29]Lignier, P., Mangematin, S., Morfin, F., et al., 2008. Solvent and oxidant effects on the Au/TiO2-catalyzed aerobic epoxidation of stilbene. Catalysis Today, 138(1-2):50-54.

[30]Liu, L.L., Chen, C.C., Hu, X.F., et al., 2008. A role of ionic liquid as an activator for efficient olefin epoxidation catalyzed by polyoxometalate. New Journal of Chemistry, 32(2):283-289.

[31]Maayan, G., Neumann, R., 2005. Direct aerobic epoxidation of alkenes catalyzed by metal nanoparticles stabilized by the H5PV2Mo10O40 polyoxometalate. Chemical Communications, (36):4595-4597.

[32]Maksimovskaya, R.I., Maksimov, G.M., 2011. Borotungstate polyoxometalates: multinuclear NMR structural characterization and conversions in solutions. Inorganic Chemistry, 50(11):4725-4731.

[33]Matlock, P.L., Brown, W.L., Clinton, N.A., 1999. Chapter 6: polyalkylene glycols. In: Rudnick, L.R., Shubkin, R.L. (Eds.), Synthetic Lubricants and High-performance Functional Fluids, 2nd Edition. Marcel Dekker, New York, p.186.

[34]Mendez, V., Guillois, K., Daniele, S., et al., 2010. Aerobic methylcyclohexane-promoted epoxidation of stilbene over gold nanoparticles supported on Gd-doped titania. Dalton Transactions, 39(36):8457-8468.

[35]Mizuno, N., Kamata, K., 2011. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coordination Chemistry Reviews, 255(19-20):2358-2370.

[36]Mizuno, N., Yamaguchi, K., Kamata, K., 2005. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coordination Chemistry Reviews, 249(17-18):1944-1956.

[37]Mizuno, N., Yamaguchi, K., Kamata, K., 2011. Molecular design of polyoxometalate-based compounds for environmentally-friendly functional group transformations: from molecular catalysts to heterogeneous catalysts. Catalysis Surveys from Asia, 15(2):68-79.

[38]Moghadam, M., Mirkhani, V., Tangestaninejad, S., et al., 2010. Polyoxometalate–molybdenylacetylacetonate hybrid complex: a reusable and efficient catalyst for oxidation of alkenes with tert-butylhydroperoxide. Inorganic Chemistry Communications, 13(2):244-249.

[39]Nomiya, K., Hashino, K., Nemoto, Y., et al., 2001. Oxidation of toluene and nitrobenzene with 30% aqueous hydrogen peroxide catalyzed by vanadium (V)-substituted polyoxometalates. Journal of Molecular Catalysis A: Chemical, 176(1-2):79-86.

[40]Pastor, I.M., Yus, M., 2005. Asymmetric ring opening of epoxides. Current Organic Chemistry, 9(1):1-29.

[41]Pathan, S., Patel, A., 2011. Novel heterogeneous catalyst, supported undecamolybdophosphate: synthesis, physico-chemical characterization and solvent-free oxidation of styrene. Dalton Transactions, 40(2):348-355.

[42]Petrovic, Z.S., 2008. Polyurethanes from vegetable oils. Polymer Reviews, 48(1):109-155.

[43]Pina, C.D., Falletta, E., Rossi, M., 2012. Update on selective oxidation using gold. Chemical Society Reviews, 41(1):350-369.

[44]Pope, M.T., 1983. Heteropoly and Isopolyoxometalates. Springer-Verlag, Berlin, Germany.

[45]Pope, M.T., Müller, A., 2001. Polyoxometalate Chemistry: from Topology via Self-assembly to Applications. Springer Netherlands, Dordrecht, the Netherlands.

[46]Proust, A., Thouvenot, R., Gouzerh, P., 2008. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science. Chemical Communications, (16):1837-1852.

[47]Reinoso, S., Dickman, M.H., Matei, M.F., et al., 2007. 13-tungstoborate stabilized by an organostannoxane hexamer. Inorganic Chemistry, 46(11):4383-4385.

[48]Selvaraju, K., Marimuthu, K., 2013. Structural and spectroscopic studies on concentration dependent Sm3+ doped boro-tellurite glasses. Journal of Alloys and Compounds, 553:273-281.

[49]Shanmugam, S., Viswanathan, B., Varadarajan, T., 2004. Esterification by solid acid catalysts—a comparison. Journal of Molecular Catalysis A: Chemical, 223(1-2):143-147.

[50]Sharet, S., Sandars, E., Wang, Y., et al., 2012. Orientations of polyoxometalate anions on gold nanoparticles. Dalton Transactions, 41(33):9849-9851.

[51]Sheldon, R.A., 1991. Heterogeneous catalytic oxidation and fine chemicals. Studies in Surface Science and Catalysis, 59:33-54.

[52]Shringarpure, P.A., Patel, A., 2011. Supported undecaphosphotungstate: an ecofriendly and efficient solid catalyst for nonsolvent liquid-phase aerobic epoxidation of alkenes. Industrial & Engineering Chemistry Research, 50(15):9069-9076.

[53]Skobelev, I.Y., Sorokin, A.B., Kovalenko, K.A., et al., 2013. Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. Journal of Catalysis, 298:61-69.

[54]Somma, F., Puppinato, A., Strukul, G., 2006. Niobia-silica aerogel mixed oxide catalysts: effects of the niobium content, the calcination temperature and the surface hydrophilicity on the epoxidation of olefins with hydrogen peroxide. Applied Catalysis A: General, 309(1):115-121.

[55]Streb, C., 2012. New trends in polyoxometalate photoredox chemistry: from photosensitisation to water oxidation catalysis. Dalton Transactions, 41(6):1651-1659.

[56]Tang, H.J., Yin, H.J., Wang, J.Y., et al., 2013. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angewandte Chemie International Edition, 52(21):5585-5589.

[57]Tang, Q., Wang, Y., Liang, J., et al., 2004. Co2+-exchanged faujasite zeolites as efficient heterogeneous catalysts for epoxidation of styrene with molecular oxygen. Chemical Communications, (4):440-441.

[58]Tebandeke, E., Coman, C., Guillois, K., et al., 2014. Epoxidation of olefins with molecular oxygen as the oxidant using gold catalysts supported on polyoxometalates. Green Chemistry, 16(3):1586-1593.

[59]Tézé, A., Michelon, M., Herve, G., 1997. Syntheses and structures of the tungstoborate anions. Inorganic Chemistry, 36(4):505-509.

[60]Timofeeva, M.N., Pai, Z.P., Tolstikov, A.G., et al., 2003. Epoxidation of cycloolefins with hydrogen peroxide in the presence of heteropoly acids combined with phase transfer catalyst. Russian Chemical Bulletin, 52(2):480-486.

[61]Tolstikov, G.A., 1976. Reactions of Hydroperoxide Oxidation. Nauka, Moscow, p.200 (in Russian).

[62]Triantis, T., Troupis, A., Gkika, E., et al., 2009. Photocatalytic synthesis of Se nanoparticles using polyoxometalates. Catalysis Today, 144(1-2):2-6.

[63]Troupis, A., Hiskia, A., Papaconstantinou, E., 2002. Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angewandte Chemie International Edition, 41(11):1911-1914.

[64]Turner, M., Golovko, V.B., Vaughan, O.P.H., et al., 2008. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature, 454(7207):981-983.

[65]Ueno, S., Yamaguchi, K., Yoshida, K., et al., 1998. Hydrotalcite catalysis: heterogeneous epoxidation of olefins using hydrogen peroxide in the presence of nitriles. Chemical Communications, (3):295-296.

[66]van der Waal, J.C., Rigutto, M.S., van Bekkum, H., 1998. Zeolite titanium beta as a selective catalyst in the epoxidation of bulky alkenes. Applied Catalysis A: General, 167(2):331-342.

[67]Villanneau, R., Roucoux, A., Beaunier, P., et al., 2014. Simple procedure for vacant POM-stabilized palladium (0) nanoparticles in water: structural and dispersive effects of lacunary polyoxometalates. RSC Advances, 4(50):26491-26498.

[68]Wang, M.S., Xu, G., Zhang, Z.J., et al., 2010. Inorganic– organic hybrid photochromic materials. Chemical Communications, 46(3):361-376.

[69]Wang, S., Yi, L.X., Halpert, J.E., et al., 2012. A novel and highly efficient photocatalyst based on P25–graphdiyne nanocomposite. Small, 8(2):265-271.

[70]Wang, X.S., Guo, X.W., Li, G., 2002. Synthesis of titanium silicalite (TS-1) from the TPABr system and its catalytic properties for epoxidation of propylene. Catalysis Today, 74(1-2):65-75.

[71]Wu, P., Tatsumi, T., Komatsu, T., et al., 2001. A novel titanosilicate with MWW structure: II. Catalytic properties in the selective oxidation of alkenes. Journal of Catalysis, 202(2):245-255.

[72]Xu, L.X., He, C.H., Zhu, M.Q., et al., 2007. Silica-supported gold catalyst modified by doping with titania for cyclohexane oxidation. Catalysis Letters, 118(3-4):248-253.

[73]Yamaguchi, K., Ebitani, K., Kaneda, K., 1999. Hydrotalcite-catalyzed epoxidation of olefins using hydrogen peroxide and amide compounds. The Journal of Organic Chemistry, 64(8):2966-2968.

[74]Yamase, T., 2005. Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. Journal of Materials Chemistry, 15(45):4773-4782.

[75]Zhao, W., Ma, B.C., Hua, H., et al., 2008. Environmentally friendly and highly efficient alkenes epoxidation system consisting of [π-C5H5N(CH2)11CH3]3PW4O32/H2O2/ethyl acetate/olefin. Catalysis Communications, 9(14):2455-2459.

[76]Zhao, W., Zhang, Y., Ma, B., et al., 2010. Oxidation of alcohols with hydrogen peroxide in water catalyzed by recyclable Keggin-type tungstoborate catalyst. Catalysis Communications, 11(6):527-531.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE