CLC number: S917.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-04-28
Cited: 11
Clicked: 7230
Xiao-liang Li, Yue Kang, Xiao-yan Zhang, Bing-lin Zhu, Wei-huan Fang. Identification of a heat shock cognate protein 70 gene in Chinese soft-shell turtle (Pelodiscus sinensis) and its expression profiles under thermal stress[J]. Journal of Zhejiang University Science B, 2012, 13(6): 465-477.
@article{title="Identification of a heat shock cognate protein 70 gene in Chinese soft-shell turtle (Pelodiscus sinensis) and its expression profiles under thermal stress",
author="Xiao-liang Li, Yue Kang, Xiao-yan Zhang, Bing-lin Zhu, Wei-huan Fang",
journal="Journal of Zhejiang University Science B",
volume="13",
number="6",
pages="465-477",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100309"
}
%0 Journal Article
%T Identification of a heat shock cognate protein 70 gene in Chinese soft-shell turtle (Pelodiscus sinensis) and its expression profiles under thermal stress
%A Xiao-liang Li
%A Yue Kang
%A Xiao-yan Zhang
%A Bing-lin Zhu
%A Wei-huan Fang
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 6
%P 465-477
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100309
TY - JOUR
T1 - Identification of a heat shock cognate protein 70 gene in Chinese soft-shell turtle (Pelodiscus sinensis) and its expression profiles under thermal stress
A1 - Xiao-liang Li
A1 - Yue Kang
A1 - Xiao-yan Zhang
A1 - Bing-lin Zhu
A1 - Wei-huan Fang
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 6
SP - 465
EP - 477
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100309
Abstract: The heat shock cognate protein 70 (Hsc70) is a member of a 70-kDa heat shock protein (HSP70) family that functions as molecular chaperones. In this study, a novel Hsc70 gene from Chinese soft-shelled turtle (Pelodiscus sinensis) (tHsc70) was identified. The tHsc70 full-length complementary DNA (cDNA) is 2272 bp long with a 1941-bp open reading frame (ORF) encoding 646 amino acids. Three characteristic signature regions of the HSP70 family, two major domains of an adenosine triphosphate (ATP)/guanosine triphosphate (GTP) binding domain (ABD), and a substrate-binding domain (SBD) were present in the predicted tHsc70 amino acid sequence. The tHsc70 gene was expressed in Escherichia coli BL21 and the expression product reacted with the anti-Hsc70 mouse monoclonal antibody by Western blotting. Homology analysis revealed that tHsc70 shared identity from 53.9% to 87.7% at the nucleotide level, and 49.1% to 99.5% at the amino acid level with the known Hsc70s. phylogenetic analysis showed that tHsc70 was clustered together with the Hsc70 gene of another reptile species (Alligator mississippiensis). The tHsc70 was expressed in the liver, lung, heart, and skeletal muscle. The expression patterns of tHsc70 messenger RNA (mRNA) differed among different tissues under different durations of heat stress at 40 °C. Adaptation at 25 °C for 1 h after heat stress was also different among tissues and length of heat stress. Irrespective of different profiles of expression under heat stress, tHsc70 may play roles in protecting turtles from thermal stress.
[1]Bönish, C., Temme, C., Moritz, B., Wahle, E., 2007. Degradation of hsp70 and other mRNAs in Drosophila via the 5′-3′ pathway and its regulation by heat shock. J. Biol. Chem., 282(30):21818-21828.
[2]Brocchieri, L., de Macario, E.C., Macario, A.J.L., 2008. hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol. Biol., 8:19.
[3]Chuang, K.H., Ho, S.H., Song, Y.L., 2007. Cloning and expression analysis of heat shock cognate 70 gene promoter in tiger shrimp (Penaeus monodon). Gene, 405(1-2):10-18.
[4]Connor, M.K., Takahashi, M., Hood, D.A., 1996. Tissue-specific stability of nuclear- and mitochondrially encoded mRNAs. Arch. Biochem. Biophys., 333(1):103-108.
[5]de Maio, A., 2011. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones, 16(3):235-249.
[6]Demand, J., Lüders, J., Höhfeld, J., 1998. The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol. Cell. Biol., 18(4):2023-2028.
[7]Glaberman, S., du Pasquier, L., Caccone, A., 2008. Characterization of a nonclassical class I MHC gene in a reptile, the Galápagos marine iguana (Amblyrhynchus cristatus). PLoS One, 3(8):e2859.
[8]Hunt, C.R., Parsian, A.J., Goswami, P.C., Kozak, C.A., 1999. Characterization and expression of the mouse Hsc70 gene. Biochim. Biophys. Acta, 1444(3):315-325.
[9]Kampinga, H.H., Hageman, J., Vos, M.J., Kubota, H., Tanguay, R.M., Bruford, E.A., Cheetham, M.E., Chen, B., Hightower, L.E., 2009. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones, 14(1):105-111.
[10]Karouna-Renier, N.K., Yang, W.J., Rao, K.R., 2003. Cloning and characterization of a 70 kDa heat shock cognate gene (Hsc70) from two species of Chironomus. Insect Mol. Biol., 12(1):19-26.
[11]Katsube, T., Togashi, S., Hashimoto, N., Ogiu, T., Tsuji, H., 2004. Filamentous actin binding ability of cortactin isoforms is responsible for their cell-cell junctional localization in epithelial cells. Arch. Biochem. Biophys., 427(1):79-90.
[12]Kawai, A., Nishida-Umehara, C., Ishijima, J., Tsuda, Y., Ota, H., Matsuda, Y., 2007. Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet. Genome Res., 117(1-4):92-102.
[13]Li, X.L., Zhang, C.L., Fang, W.H., Lin, F.C., 2008. White-spot disease of Chinese soft-shelled turtles (Trionyx sinens) caused by Paecilomyces lilacinus. J. Zhejiang Univ. Sci. B, 9(7):578-581.
[14]Li, X.L., Zhu, B.L., Chen, N., Hu, H.X., Chen, J.S., Zhang, X.Y., Li, J., Fang, W.H., 2011. Molecular characterization and functional analysis of MyD88 in Chinese soft-shelled turtle Trionyx sinensis. Fish Shellfish Immunol., 30(1):33-38.
[15]Lindquist, S., Craig, E.A., 1988. The heat shock protein. Annu. Rev. Genet., 22:631-677.
[16]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(ΔΔCt method. Methods, 25(4):402-408.
[17]Lo, W.Y., Liu, K.F., Liao, I.C., Song, Y.L., 2004. Cloning and molecular characterization of heat shock cognate 70 from tiger shrimp (Penaeus monodon). Cell Stress Chaperones, 9(4):332-343.
[18]Luan, W., Li, F., Zhang, J., Wen, R., Li, Y., Xiang, J., 2010. Identification of a novel inducible cytosolic Hsp70 gene in Chinese shrimp Fenneropenaeus chinensis and comparison of its expression with the cognate Hsc70 under different stresses. Cell Stress Chaperones, 15(1):83-93.
[19]Matsuda, Y., Nishida-Umehara, C., Tarui, H., Kuroiwa, A., Yamada, K., Isobe, T., Ando, J., Fujiwara, A., Hirao, Y., Nishimura, O., et al., 2005. Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosome Res., 13(6):601-615.
[20]Parent, R., Qu, X., Petit, M.A., Beretta, L., 2009. The heat shock cognate protein 70 is associated with hepatitis C virus particles and modulates virus infectivity. Hepatology, 49(6):1798-1809.
[21]Pockley, A.G., 2003. Heat shock proteins as regulators of the immune response. Lancet, 362(9382):469-476.
[22]Pockley, A.G., Muthana, M., Calderwood, S.K., 2008. The dual immunoregulatory roles of stress proteins. Trends Biochem. Sci., 33(2):71-79.
[23]Pokorná, M., Giovannotti, M., Kratochvíl, L., Kasai, F., Trifonov, V.A., O′Brien, P.C.M., Caputo, V., Olmo, E., Ferguson-Smith, M.A., Rens, W., 2011. Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma, 120(5):455-468.
[24]Santacruz, H., Vriz, S., Angelier, N., 1997. Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. Dev. Genet., 21(3):223-233.
[25]Saxena, V., Lienesch, D.W., Zhou, M., Bommireddy, R., Azhar, M., Doetschman, T., Singh, R.R., 2008. Dual roles of immunoregulatory cytokine TGF-beta in the pathogenesis of autoimmunity-mediated organ damage. J. Immunol., 180(3):1903-1912.
[26]Schroderus, E., Jokinen, I., Koivula, M., Koskela, E., Mappes, T., Mills, S.C., Oksanen, T.A., Poikonen, T., 2010. Intra- and intersexual trade-offs between testosterone and immune system: implications for sexual and sexually antagonistic selection. Am. Nat., 176(4):e90-e97.
[27]Scotto-Lavino, E., Du, G., Frohman, M.A., 2006. 3′ end cDNA amplification using classic RACE. Nat. Protoc., 1(6):2742-2745.
[28]Shim, J.K., Jung, D.O., Park, J.W., Kim, D.W., Ha, D.M., Lee, K.Y., 2006. Molecular cloning of the heat-shock cognate 70 (Hsc70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 145(3-4):288-295.
[29]Su, X., Sykes, J.B., Ao, L., Raeburn, C.D., Fullerton, D.A., Meng, X., 2010. Extracellular heat shock cognate protein 70 induces cardiac functional tolerance to endotoxin: differential effect on TNF-alpha and ICAM-1 levels in heart tissue. Cytokine, 51(1):60-66.
[30]Tabeta, K., Yamazaki, K., 2010. Analysis of immune responses to purified recombinant antigens of periodontal pathogens. Methods Mol. Biol., 666:345-357.
[31]Tsan, M.F., Gao, B., 2009. Heat shock proteins and immune system. J. Leukoc. Biol., 85(6):905-910.
[32]Uenishi, R., Gong, P., Suzuki, K., Koizumi, S., 2006. Cross talk of heat shock and heavy metal regulatory pathways. Biochem. Biophys. Res. Commun., 341(4):1072-1077.
[33]Wang, H., Dong, S.Z., Li, K., Hu, C., Ye, G.Y., 2008. A heat shock cognate 70 gene in the endoparasitoid, Pteromalus puparum, and its expression in relation to thermal stress. BMB Rep., 41(5):388-393.
[34]Watanabe, K., Fuse, T., Asano, I., Tsukahara, F., Maru, Y., Nagata, K., Kitazato, K., Kobayashi, N., 2006. Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS Lett., 580(24):5785-5790.
[35]Watanabe, K., Tachibana, M., Kim, S., Watarai, M., 2009. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells. J. Biomed. Sci., 16(1):113.
[36]Xiang, L.X., He, D., Dong, W.R., Zhang, Y.W., Shao, J.Z., 2010. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics, 11:472.
[37]Xie, J.H., Zhu, H.Y., Guo, L., Ruan, Y.Y., Wang, L., Sun, L.L., Zhou, L., Wu, W.B., Yun, X.J., Shen, A.G., et al., 2010. Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway. J. Immunol., 185(4):2306-2313.
[38]Yamashita, M., Hirayoshi, K., Nagata, K., 2004. Characterization of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates. Gene, 336(2):207-218.
[39]Yang, A.F., Zhou, Z.C., Dong, Y., Jiang, B., Wang, X.Y., Chen, Z., Guan, X.Y., Wang, B., Sun, D.P., 2010. Expression of immune-related genes in embryos and larvae of sea cucumber Apostichopus japonicus. Fish Shellfish Immunol., 29(5):839-845.
[40]Zimmerman, L.M., Vogel, L.A., Bowden, R.M., 2010. Understanding the vertebrate immune system: insights from the reptilian perspective. J. Exp. Biol., 213(5):661-671.
Open peer comments: Debate/Discuss/Question/Opinion
<1>