Full Text:   <4335>

CLC number: S571.1

On-line Access: 2012-12-07

Received: 2012-03-19

Revision Accepted: 2012-08-13

Crosschecked: 2012-10-31

Cited: 14

Clicked: 6780

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.12 P.972-980

http://doi.org/10.1631/jzus.B1200086


Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS


Author(s):  Jie Lin, Yi Dai, Ya-nan Guo, Hai-rong Xu, Xiao-chang Wang

Affiliation(s):  Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   xcwang@zju.edu.cn

Key Words:  Partial least square (PLS) regression, Green tea, Headspace solid phase microextraction (HS-SPME), Volatile profile, Quality prediction


Jie Lin, Yi Dai, Ya-nan Guo, Hai-rong Xu, Xiao-chang Wang. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS[J]. Journal of Zhejiang University Science B, 2012, 13(12): 972-980.

@article{title="Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS",
author="Jie Lin, Yi Dai, Ya-nan Guo, Hai-rong Xu, Xiao-chang Wang",
journal="Journal of Zhejiang University Science B",
volume="13",
number="12",
pages="972-980",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200086"
}

%0 Journal Article
%T Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS
%A Jie Lin
%A Yi Dai
%A Ya-nan Guo
%A Hai-rong Xu
%A Xiao-chang Wang
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 12
%P 972-980
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200086

TY - JOUR
T1 - Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS
A1 - Jie Lin
A1 - Yi Dai
A1 - Ya-nan Guo
A1 - Hai-rong Xu
A1 - Xiao-chang Wang
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 12
SP - 972
EP - 980
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200086


Abstract: 
This study aimed to analyze the volatile chemical profile of Longjing tea, and further develop a prediction model for aroma quality of Longjing tea based on potent odorants. A total of 21 Longjing samples were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Pearson’s linear correlation analysis and partial least square (PLS) regression were applied to investigate the relationship between sensory aroma scores and the volatile compounds. Results showed that 60 volatile compounds could be commonly detected in this famous green tea. Terpenes and esters were two major groups characterized, representing 33.89% and 15.53% of the total peak area respectively. Ten compounds were determined to contribute significantly to the perceived aroma quality of Longjing tea, especially linalool (0.701), nonanal (0.738), (Z)-3-hexenyl hexanoate (−0.785), and β-ionone (−0.763). On the basis of these 10 compounds, a model (correlation coefficient of 89.4% and cross-validated correlation coefficient of 80.4%) was constructed to predict the aroma quality of Longjing tea. Summarily, this study has provided a novel option for quality prediction of green tea based on HS-SPME/GC-MS technique.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alvarez, R.Q., Passaro, C.C., Lara, O.G., Londono, J.L., 2011. Relationship between chromatographic profiling by HS-SPME and sensory quality of mandarin juices: effect of squeeze technology. Proc. Food Sci., 1:1396-1403.

[2]Augusto, F., Zini, C.A., 2002. Solid Phase Microextraction. In: Pawliszyn, J. (Ed.), Sampling and Sample Preparation for Field and Laboratory: Fundamentals and New Directions in Sample Preparation. Elsevier, Amsterdam, p.389-478.

[3]Azodanlou, R., Darbellay, C., Luisier, J.L., Villettaz, J.C., Amado, R., 2003a. Quality assessment of strawberries (Fragaria species). J. Agric. Food Chem., 51(3):715-721.

[4]Azodanlou, R., Darbellay, C., Luisier, J.L., Villettaz, J.C., Amadò, R., 2003b. Development of a model for quality assessment of tomatoes and apricots. LWT-Food Sci. Technol., 36(2):223-233.

[5]Cheng, Y., Huynh-Ba, T., Blank, I., Robert, F., 2008. Temporal changes in aroma release of Longjing tea infusion: interaction of volatile and nonvolatile tea components and formation of 2-butyl-2-octenal upon aging. J. Agric. Food Chem., 56(6):2160-2169.

[6]Choi, H.S., 2003. Character impact odorants of Citrus hallabong [(C. unshiu Marcov×C. Sinensis Osbeck)×C. Reticulata Blanco] cold-pressed peel oil. J. Agric. Food Chem., 51(9):2687-2692.

[7]Choi, H.S., 2005. Characteristic odor components of kumquat (Fortunella japonica Swingle) peel oil. J. Agric. Food Chem., 53(5):1642-1647.

[8]General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ) and the Standardization Administration of China (SAC), 2008. Product of Geographical Indication-Longjing Tea, GB/T 18650-2008. China Standard Publishing House, Beijing (in Chinese).

[9]General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ) and the Standardization Administration of China (SAC), 2009. Methodology of Sensory Evaluation of Tea, GB/T 23776-2009. China Standard Publishing House, Beijing (in Chinese).

[10]Jeleń, H.H., Obuchowska, M., Zawirska-Wojtasiak, R., Wasowicz, E., 2000. Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. J. Agric. Food Chem., 48(6):2360-2367.

[11]Jøgensen, U., Hansen, M., Christensen, L.P., Jensen, K., Kaack, K., 2000. Olfactory and quantitative analysis of aroma compounds in elder flower (Sambucus nigra L.) drink processed from five cultivars. J. Agric. Food Chem., 48(6):2376-2383.

[12]Jumtee, K., Komura, H., Bamba, T., Fukusaki, E., 2011. Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis. J. Biosci. Bioeng., 112(3):252-255.

[13]Kawakami, M., Yamanishi, T., 1983. Flavor constituents of longjing tea. Agric. Biol. Chem., 47(9):2077-2083.

[14]Kumazawa, K., Masuda, H., 1999. Identification of potent odorants in Japanese green tea (Sen-cha). J. Agric. Food Chem., 47(12):5169-5172.

[15]Kumazawa, K., Masuda, H., 2002. Identification of potent odorants in different green tea varieties using flavor dilution technique. J. Agric. Food Chem., 50(20):5660-5663.

[16]Lavilla, T., Puy, J., López, M.L., Recasens, I., Vendrell, M., 1999. Relationships between volatile production, fruit quality, and sensory evaluation in granny smith apples stored in different controlled-atmosphere treatments by means of multivariate analysis. J. Agric. Food Chem., 47(9):3791-3803.

[17]Lv, H.P., Zhong, Q.S., Lin, Z., Wang, L., Tan, J.F., Guo, L., 2012. Aroma characterisation of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC-olfactometry. Food Chem., 130(4):1074-1081.

[18]Pino, J.A., Marbot, R., Vázquez, C., 2002. Characterization of volatiles in Costa Rican guava [Psidium friedrichsthalianum (Berg) Niedenzu] fruit. J. Agric. Food Chem., 50(21):6023-6026.

[19]Pongsuwan, W., Fukusaki, E., Bamba, T., Yonetani, T., Yamahara, T., Kobayashi, A., 2007. Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J. Agric. Food Chem., 55(2):231-236.

[20]Pongsuwan, W., Bamba, T., Yonetani, T., Kobayashi, A., Fukusaki, E., 2008. Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting. J. Agric. Food Chem., 56(3):744-750.

[21]Shimoda, M., Shigematsu, H., Shiratsuchi, H., Osajima, Y., 1995. Comparison of volatile compounds among different grades of green tea and their relations to odor attributes. J. Agric. Food Chem., 43(6):1621-1625.

[22]Togari, N., Kobayashi, A., Aishima, T., 1995. Relating sensory properties of tea aroma to gas chromatographic data by chemometric calibration methods. Food Res. Int., 28(5):485-493.

[23]Wang, K., Ruan, J., 2009. Analysis of chemical components in green tea in relation with perceived quality, a case study with Longjing teas. Int. J. Food Sci. Technol., 44(12):2476-2484.

[24]Wang, K., Liu, F., Liu, Z., Huang, J., Xu, Z., Li, Y., Chen, J., Gong, Y., Yang, X., 2010. Analysis of chemical components in oolong tea in relation to perceived quality. Int. J. Food Sci. Technol., 45(5):913-920.

[25]Wold, S., Sjöström, M., Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics. Chemometr. Int. Lab. Syst., 58(2):109-130.

[26]Yu, S.J., Zhang, G.X., 2002. The discrimination of Longjing tea. J. Chin. Tea Proc., 2:35-36 (in Chinese).

[27]Zhu, M., Li, E., He, H., 2008. Determination of volatile chemical constitutes in tea by simultaneous distillation extraction, vacuum hydrodistillation and thermal desorption. Chromatographia, 68(7-8):603-610.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE