Full Text:   <4861>

Summary:  <2168>

CLC number: R815; R817

On-line Access: 2014-10-08

Received: 2014-05-07

Revision Accepted: 2014-08-11

Crosschecked: 2014-09-25

Cited: 9

Clicked: 7801

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.10 P.845-863


Therapeutic radionuclides in nuclear medicine: current and future prospects

Author(s):  Chai-Hong Yeong1, Mu-hua Cheng2, Kwan-Hoong Ng1

Affiliation(s):  1. Department of Biomedical Imaging & University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; more

Corresponding email(s):   chyeong@um.edu.my

Key Words:  Therapeutic radionuclide, Targeted radionuclide therapy, Radioimmunotherapy, Molecular targeting, Theranostics

Share this article to: More |Next Article >>>

Chai-Hong Yeong, Mu-hua Cheng, Kwan-Hoong Ng. Therapeutic radionuclides in nuclear medicine: current and future prospects[J]. Journal of Zhejiang University Science B, 2014, 15(10): 845-863.

@article{title="Therapeutic radionuclides in nuclear medicine: current and future prospects",
author="Chai-Hong Yeong, Mu-hua Cheng, Kwan-Hoong Ng",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Therapeutic radionuclides in nuclear medicine: current and future prospects
%A Chai-Hong Yeong
%A Mu-hua Cheng
%A Kwan-Hoong Ng
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 10
%P 845-863
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400131

T1 - Therapeutic radionuclides in nuclear medicine: current and future prospects
A1 - Chai-Hong Yeong
A1 - Mu-hua Cheng
A1 - Kwan-Hoong Ng
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 10
SP - 845
EP - 863
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400131

The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 (131I), phosphorous-32 (32P), strontium-90 (90Sr), and yttrium-90 (90Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies.



Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Article Content


[1] Ackery, D., Yardley, J., 1993. Radionuclide-targeted therapy for the management of metastatic bone pain. Semin Oncol, 20(3 Suppl. 2):27-31. 

[2] Alberti, C., 2012. From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci, 16(14):1925-1933. 

[3] Alcindor, T., Witzig, T.E., 2002. Radioimmunotherapy with yttrium-90 ibritumomab tiuxetan for patients with relapsed CD20+ B-cell non-Hodgkin’s lymphoma. Curr Treat Options Oncol, 3(4):275-282. 

[4] Alonso-Ruiz, A., Perez-Ruiz, F., Calabozo, M., 1998. Efficacy of radiosynovectomy of the knee in rheumatoid arthritis: evaluation with magnetic resonance imaging. Clin Rheumatol, 17(4):277-281. 

[5] Anderson, P., Nunez, R., 2007. Samarium lexidronam (153Sm-EDTMP): skeletal radiation for osteoblastic bone metastases and osteosarcoma. Expert Rev Anticancer Ther, 7(11):1517-1527. 

[6] Arslan, N., Emi, M., Alagoz, E., 2011. Selective intraarterial radionuclide therapy with Yttrium-90 (Y-90) microspheres for hepatic neuroendocrine metastases: initial experience at a single center. Vojnosanit Pregl, 68(4):341-348. 

[7] Atkins, H.L., 1998. Overview of nuclides for bone pain palliation. Appl Radiat Isot, 49(4):277-283. 

[8] Azinovic, I., DeNardo, G.L., Lamborn, K.R., 2006. Survival benefit associated with human anti-mouse antibody (HAMA) in patients with B-cell malignancies. Cancer Immunol Immunother, 55(12):1451-1458. 

[9] Bartolomei, M., Bodei, L., de Cicco, C., 2009. Peptide receptor radionuclide therapy with 90Y-DOTATOC in recurrent meningioma. Eur J Nucl Med Mol Imaging, 36(9):1407-1416. 

[10] Baum, R.P., Kulkarni, H.R., 2012. THERANOSTICS: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy—the bad Berka experience. Theranostics, 2(5):437-447. 

[11] Bertrand, N., Wu, J., Xu, X., 2014. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev, 66:2-25. 

[12] Bodei, L., Ferone, D., Grana, C.M., 2009. Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Invest, 32(4):360-369. 

[13] Brack, S.S., Silacci, M., Birchler, M., 2006. Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res, 12(10):3200-3208. 

[14] Buchegger, F., Antonescu, C., Delaloye, A.B., 2006. Long-term complete responses after 131I-tositumomab therapy for relapsed or refractory indolent non-Hodgkin’s lymphoma. Br J Cancer, 94(12):1770-1776. 

[15] Buchmann, I., Bunjes, D., Kotzerke, J., 2002. Myeloablative radioimmunotherapy with Re-188-anti-CD66-antibody for conditioning of high-risk leukemia patients prior to stem cell transplantation: biodistribution, biokinetics and immediate toxicities. Cancer Biother Radiopharm, 17(2):151-163. 

[16] Carrasquillo, J.A., Pandit-Taskar, N., Chen, C.C., 2012. Radionuclide therapy of adrenal tumors. J Surg Oncol, 106(5):632-642. 

[17] Chakravarty, R., Dash, A., 2014. Nanomaterial-based adsorbents: the prospect of developing new generation radionuclide generators to meet future research and clinical demands. J Radioanal Nucl Chem, 299(1):741-757. 

[18] Chang, C.H., Tsai, L.C., Chen, S.T., 2005. Radio-immunotherapy and apoptotic induction on CK19-overexpressing human cervical carcinoma cells with Re-188-mAbCx-99. Anticancer Res, 25(4):2719-2728. 

[19] Chen, F.D., Hsieh, B.T., Wang, H.E., 2001. Efficacy of Re-188-labelled sulphur colloid on prolongation of survival time in melanoma-bearing animals. Nucl Med Biol, 28(7):835-844. 

[20] Chen, S., Yu, L., Jiang, C., 2005. Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol, 23(7):1538-1547. 

[21] Chen, W.L., Guan, S.I., Huang, W.S., 1993. Radioiodine I-131 therapy in the management of differentiated thyroid carcinoma: a review of 202 patients. J Formos Med Assoc, 92(7):623-631. 

[22] Chen, Z.N., Mi, L., Xu, J., 2006. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical Phase I/II trials. Int J Radiat Oncol Biol Phys, 65(2):435-444. 

[23] Chiacchio, S., Mazzarri, S., Lorenzoni, A., 2011. Radionuclide therapy and integrated protocols for bone metastases. Q J Nucl Med Mol Imaging, 55(4):431-447. 

[24] Clunie, G., Fischer, M., 2003. EANM procedure guidelines for radiosynovectomy. Eur J Nucl Med Mol Imaging, 30(3):B12-B16. 

[25] Cremonesi, M., Ferrari, M., Zoboli, S., 1999. Biokinetics and dosimetry in patients administered with 111In-DOTA-Tyr3-octreotide: implications for internal radiotherapy with 90Y-DOTATOC. Eur J Nucl Med Mol Imaging, 26(8):877-886. 

[26] Cremonesi, M., Ferrari, M., Bodei, L., 2006. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med, 47(9):1467-1475. 

[27] Das, B.K., 2007. Role of radiosynovectomy in the treatment of rheumatoid arthritis and hemophilic arthropathies. Biomed Imaging Interv J, 3(4):e45

[28] Das, T., Pillai, M.R., 2013. Options to meet the future global demand of radionuclides for radionuclide therapy. Nucl Med Biol, 40(1):23-32. 

[29] Dash, A., Knapp, F.F., Pillai, M.R., 2013. Targeted radionuclide therapy—an overview. Curr Radiopharm, 6(3):152-180. 

[30] Davis, M.E., Chen, Z.G., Shin, D.M., 2008. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov, 7(9):771-782. 

[31] de Jong, M., Valkema, R., Jamar, F., 2002. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med, 32(2):133-140. 

[32] de Jong, M., Breeman, W.A., Valkema, R., 2005. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med, 46(S1):13S-17S. 

[33] de la Corte-Rodriguez, H., Rodriguez-Merchan, E.C., Jimenez-Yuste, V., 2011. Radiosynovectomy in hemophilia: quantification of its effectiveness through the assessment of 10 articular parameters. J Thromb Haemost, 9(5):928-935. 

[34] DeNardo, G.L., DeNardo, S.J., Lamborn, K.R., 1998. Low-dose, fractionated radioimmunotherapy for B-cell malignancies using 131I-Lym-1 antibody. Cancer Biother Radiopharm, 13(4):239-254. 

[35] Deutsch, E., Brodack, J.W., Deutsch, K.F., 1993. Radiation synovectomy revisited. Eur J Nucl Med, 20(11):1113-1127. 

[36] Domnitz, J., Hurd, H.F., Goldzieher, J.W., 1960. The evaluation of I-131 therapy of Graves’ disease. Reliability and prognostic value of chemical and radioactive iodine studies. Arch Intern Med, 106(2):194-204. 

[37] Donald, W.K., Raphael, E.P., Ralph, R.W., 2003. Holland-Frei Cancer Medicine. , Hamilton, BC Decker,:

[38] El-Sayed, I.H., Huang, X., El-Sayed, M.A., 2006. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett, 239(1):129-135. 

[39] Ersahin, D., Doddamane, I., Cheng, D., 2011. Targeted radionuclide therapy. Cancers, 3(4):3838-3855. 

[40] Ezziddin, S., Meyer, C., Kahancova, S., 2012.  90Y radioembolization after radiation exposure from peptide receptor radionuclide therapy. J Nucl Med, 53(11):1663-1669. 

[41] Ferguson, S., Lesniak, M.S., 2007. Convection enhanced drug delivery of novel therapeutic agents to malignant brain tumors. Curr Drug Deliv, 4(2):169-180. 

[42] Ferrari, M., 2005. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 5(3):161-171. 

[43] Flux, G., Bardies, M., Monsieurs, M., 2006. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys, 16(1):47-59. 

[44] Forrer, F., Waldherr, C., Maecke, H.R., 2006. Targeted radionuclide therapy with 90Y-DOTATOC in patients with neuroendocrine tumors. Anticancer Res, 26(1B):703-707. 

[45] Forssell-Aronsson, E., Fjalling, M., Nilsson, O., 1995. Indium-111 activity concentration in tissue samples after intravenous injection of indium-111-DTPA-D-Phe-1-octreotide. J Nucl Med, 36(1):7-12. 

[46] Forster, G.J., Engelbach, M.J., Brockmann, J.J., 2001. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of 86Y-DOTATOC and 111In-DTPA-octreotide. Eur J Nucl Med, 28(12):1743-1750. 

[47] Friedberg, J.W., Fisher, R.I., 2004. Iodine-131 tositumomab (Bexxar): radioimmunoconjugate therapy for indolent and transformed B-cell non-Hodgkin’s lymphoma. Expert Rev Anticancer Ther, 4(1):18-26. 

[48] Gabriel, M., 2012. Radionuclide therapy beyond radioiodine. Wien Med Wochenschr, 162(19-20):430-439. 

[49] Giammarile, F., Mognetti, T., Resche, I., 2001. Bone pain palliation with strontium-89 in cancer patients with bone metastases. Q J Nucl Med, 45(1):78-83. 

[50] Gobin, A.M., Lee, M.H., Halas, N.J., 2007. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett, 7(7):1929-1934. 

[51] Grigsby, P.W., Baglan, K., Siegel, B.A., 1999. Surveillance of patients to detect recurrent thyroid carcinoma. Cancer, 85(4):945-951. 

[52] Gulenchyn, K.Y., Yao, X., Asa, S.L., 2012. Radionuclide therapy in neuroendocrine tumours: a systematic review. Clin Oncol, 24(4):294-308. 

[53] Hamacher, K.A., Den, R.B., Den, E.I., 2001. Cellular dose conversion factors for α-particle-emitting radionuclides of interest in radionuclide therapy. J Nucl Med, 42(8):1216-1221. 

[54] Han, S., Jin, G., Wang, L., 2014. The role of PAM4 in the management of pancreatic cancer: diagnosis, radioimmunodetection, and radioimmunotherapy. J Immunol Res, 2014:268479

[55] Hdeib, A., Sloan, A., 2012. Targeted radioimmunotherapy: the role of 131I-chTNT-1/B mAb (Cotara) for treatment of high-grade gliomas. Future Oncol, 8(6):659-669. 

[56] He, Q., Lu, W.S., Liu, Y., 2013.  131I-labeled metuximab combined with chemoembolization for unresectable hepatocellular carcinoma. World J Gastroenterol, 19(47):9104-9110. 

[57] Hird, V., Maraveyas, A., Snook, D., 1993. Adjuvant therapy of ovarian cancer with radioactive monoclonal antibody. Br J Cancer, 68(2):403-406. 

[58] Hoefnagel, C.A., 1991. Radionuclide therapy revisited. Eur J Nucl Med, 18(6):408-431. 

[59] Hoefnagel, C.A., 1998. Radionuclide cancer therapy. Ann Nucl Med, 12(2):61-70. 

[60] Hoefnagel, C.A., den Hartog Jager, F.C., Taal, B.G., 1987. The role of I-131-MIBG in the diagnosis and therapy of carcinoids. Eur J Nucl Med, 13(4):187-191. 

[61] Hong, H., Zhang, Y., Sun, J., 2009. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nanotoday, 4(5):399-413. 

[62] Horning, S.J., Younes, A., Jain, V., 2005. Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-cell lymphoma, progressive after rituximab. J Clin Oncol, 23(4):712-719. 

[63] Houle, S., Yip, T.K., Shepherd, F.A., 1989. Hepatocellular carcinoma: pilot trial of treatment with Y-90 microspheres. Radiology, 172(3):857-860. 

[64] Huang, X., El-Sayed, I.H., Qian, W., 2006. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc, 128(6):2115-2120. 

[65] International Atomic Energy Agency (IAEA), 2007. Trends in radiopharmaceuticals (ISTR-2005). Proceedings of an International Symposium Organized by the IAEA, Vienna, Austria :

[66] International Atomic Energy Agency (IAEA), 2012. Nuclear data for production of therapeutic radionuclides.  . Technical Report Series 473, IAEA,Vienna, Austria :

[67] Janet, F.E., Winfried, B., 2007.  Nuclear Medicine Therapy. Informa Healthcare USA,New York :

[68] Kampen, W.U., Brenner, W., Czech, N., 2002. Intraarticular application of unsealed β-emitting radionuclides in the treatment course of inflammatory joint diseases. Curr Med Chem Anti-Inflamm Anti-Allergy Agents, 1(1):77-87. 

[69] Kassis, A.I., Adelstein, S.J., 2005. Radiobiologic principles in radionuclide therapy. J Nucl Med, 46(S1):4S-12S. 

[70] Knapp, F.F.R., Mirzadeh, S., Beets, A.L., 1998. Reactor-produced radioisotopes from ORNL for bone pain palliation. Appl Radiat Isot, 49(4):309-315. 

[71] Krijger, G.C., Ponsard, B., Harfensteller, M., 2013. The necessity of nuclear reactors for targeted radionuclide therapies. Trends Biotechnol, 31(7):390-396. 

[72] Kucuk, O.N., Soydal, C., Lacin, S., 2011. Selective intraarterial radionuclide therapy with yttrium-90 (Y-90) microspheres for unresectable primary and metastatic liver tumors. World J Surg Oncol, 9(1):86

[73] Lacin, S., Kucuk, O., Oz, I., 2011. Selective intra-arterial Y-90 microsphere therapy in hemangioendothelioma. Turk J Gastroenterol, 22(1):89-92. 

[74] Lamb, H.M., Faulds, D., 1997. Samarium 153Sm lexidronam. Drugs Aging, 11(5):413-418. 

[75] Lambert, B., van Vlierberghe, H., Troisi, R., 2010. Radionuclide therapy for hepatocellular carcinoma. Acta Gastroenterol Belg, 73(4):484-488. 

[76] Leonard, J.P., Coleman, M., Ketas, J.C., 2004. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: Phase I/II clinical trial results. Clin Cancer Res, 10(16):5327-5334. 

[77] Lewington, V.J., 2005. Bone-seeking radionuclides for therapy. J Nucl Med, 46(S1):38S-47S. 

[78] Lidar, Z., Mardor, Y., Jonas, T., 2004. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a Phase I/II clinical study. J Neurosurg, 100(3):472-479. 

[79] Liepe, K., 2012. Efficacy of radiosynovectomy in rheumatoid arthritis. Rheumatol Int, 32(10):3219-3224. 

[80] Liepe, K., Zaknun, J.J., Padhy, A., 2011. Radiosynovectomy using yttrium-90, phosphorus-32 or rhenium-188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee. Ann Nucl Med, 25(5):317-323. 

[81] Liersch, T., Meller, J., Kulle, B., 2005. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol, 23(27):6763-6770. 

[82] Lim, I., 2013. Image-based dosimetry of radionuclide therapy. J Korean Thyroid Assoc, 6(1):26-33. 

[83] MacKee, G.M., 1921.  X-rays and Radium in the Treatment of Diseases of the Skin. Lea & Febiger,New York :

[84] Maecke, H.R., Reubi, J.C., 2011. Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J Nucl Med, 52(6):841-844. 

[85] Maraveyas, A., Snook, D., Hird, V., 1994. Pharmacokinetics and toxicity of an yttrium-90-CITC-DTPA-HMFG1 radioimmunoconjugate for intraperitoneal radioimmunotherapy of ovarian cancer. Cancer, 73(S3):1067-1075. 

[86] Milenic, D.E., Brady, E.D., Brechbiel, M.W., 2004. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov, 3(6):488-499. 

[87] Mitra, A., Nan, A., Line, B.R., 2006. Nanocarriers for nuclear imaging and radiotherapy of cancer. Curr Pharm Des, 12(36):4729-4749. 

[88] Mortazavi, S.M., Asadollahi, S., Farzan, M., 2007.  32P colloid radiosynovectomy in treatment of chronic haemophilic synovitis: Iran experience. Haemophilia, 13(2):182-188. 

[89] Muir, D.W., Herman, M., 2001.  Long term needs for nuclear data development: summary report of the advisory group meeting. International Atomic Energy Agency,Vienna, Austria :

[90] Mumtaz, M., Lin, L.S., Hui, K.C., 2009. Radioiodine I-131 for the therapy of Graves’ disease. Malays J Med Sci, 16(1):25-33. 

[91] Najean, Y., Rain, J.D., 1997. Treatment of polycythemia vera: use of 32P alone or in combination with maintenance therapy using hydroxyurea in 461 patients greater than 65 years of age. Blood, 89(7):2319-2327. 

[92] Najean, Y., Rain, J.D., 1997. The very long-term evolution of polycythemia vera: an analysis of 318 patients initially treated by phlebotomy or 32P between 1969 and 1981. Seminars Hematol, 34(1):6-16. 

[93] Nakabeppu, Y., Nakajo, M., 1994. Radionuclide therapy of malignant pheochromocytoma with 131I-MIBG. Ann Nucl Med, 8(4):259-268. 

[94] Nestor, M.V., 2010. Targeted radionuclide therapy in head and neck cancer. Head Neck, 32(5):666-678. 

[95] Nilsson, S., Larsen, R.H., Fossa, S.D., 2005. First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res, 11(12):4451-4459. 

[96] Osgood, E.E., 1968. The case for 32P in treatment of polycythemia vera. Blood, 32(3):492-499. 

[97] Panyam, J., Labhasetwar, V., 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev, 55(3):329-347. 

[98] Parmentier, C., Gardet, P., 1994. The use of 32 phosphorus (32P) in the treatment of polycythemia vera. Nouvelle Revue Franaise D'hmatologie, 36(2):189-192. 

[99] Patel, S.J., Shapiro, W.R., Laske, D.W., 2005. Safety and feasibility of convection-enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery, 56(6):1243-1253. 

[100] Perkins, A., Hilson, A., Hall, J., 2008. Global shortage of medical isotopes threatens nuclear medicine services. BMJ, 337:a1577

[101] Perkins, A.C., Vivian, G., 2009. Molybdenum supplies and nuclear medicine services. Nucl Med Commun, 30(9):657-659. 

[102] Pillai, M.R., Knapp, F.F.R., 2011. Overcoming the 99mTc shortage: are options being overlooked. J Nucl Med, 52(2):15N-28N. 

[103] Pini, A., Viti, F., Santucci, A., 1998. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem, 273(34):21769-21776. 

[104] Pons, F., Herranz, R., Garcia, A., 1997. Strontium-89 for palliation of pain from bone metastases in patients with prostate and breast cancer. Eur J Nucl Med, 24(10):1210-1214. 

[105] Pressman, D., Korngold, L., 1953. The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer, 6(3):619-623. 

[106] Qaim, S.M., 2001. Therapeutic radionuclides and nuclear data. Radiochim Acta, 89(4-5):297-302. 

[107] Qaim, S.M., Tarkanyi, F., Capote, R., 2011.  Nulcear data for the production of therapeutic radionuclides. International Atomic Energy Agency,Vienna, Austria :

[108] Rasulova, N., Lyubshin, V., Arybzhanov, D., 2013. Effectiveness of bone metastases treatment by Sm-153 oxabifore in combination with monoclonal antibody denosumab (Xgeva): first experience. World J Nucl Med, 12(1):19-23. 

[109] Rhodes, B.A., Lambert, C.R., Marek, M.J., 1996. Re-188 labelled antibodies. Appl Radiat Isot, 47(1):7-14. 

[110] Sahoo, S.K., Parveen, S., Panda, J.J., 2007. The present and future of nanotechnology in human health care. Nanomed Nanotechnol Biol Med, 3(1):20-31. 

[111] Sainz-Esteban, A., Baum, R.P., 2013. Successful treatment of metastasized pancreatic vasoactive intestinal polypeptide-secreting tumor unresponsive to high-dose octreotide by peptide receptor radionuclide therapy using 90Y DOTA TATE. Clin Nucl Med, 38(12):996-997. 

[112] Schliemann, C., Wiedmer, A., Pedretti, M., 2009. Three clinical-stage tumor targeting antibodies reveal differential expression of oncofetal fibronectin and tenascin-C isoforms in human lymphoma. Leuk Res, 33(12):1718-1722. 

[113] Schmaljohann, D., 2006. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev, 58(15):1655-1670. 

[114] Schneider, P., Farahati, J., Reiners, C., 2005. Radiosynovectomy in rheumatology, orthopedics, and hemophilia. J Nucl Med, 46(S1):48S-54S. 

[115] Schultz, C.C., Campbell, J., Bakalyar, D., 2009. Y-90 microsphere therapy: prevention of adverse events. Cancer Biother Radiopharm, 24(4):427-433. 

[116] Sgouros, G., 1993. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med, 34(4):689-694. 

[117] Shamim, S.A., Kumar, R., Halanaik, D., 2010. Role of rhenium-188 tin colloid radiosynovectomy in patients with inflammatory knee joint conditions refractory to conventional therapy. Nucl Med Commun, 31(9):814-820. 

[118] Silberstein, E.B., 1979. Radionuclide therapy of hematologic disorders. Semin Nucl Med, 9(2):100-107. 

[119] Srivastava, S.C., 2012. Paving the Way to Personalized Medicine: Production of Some Promising Theragnostic Radionuclides at Brookhaven National Laboratory, Seminars in Nuclear Medicine, Elsevier,:

[120] Stabin, M.G., Eckerman, K.F., Bolch, W.E., 2002. Evolution and status of bone and marrow dose models. Cancer Biother Radiopharm, 17(4):427-433. 

[121] Tavintharan, S., Sundram, F.X., Chew, L.S., 1997. Radioiodine (I-131) therapy and the incidence of hypothyroidism. Ann Acad Med Singap, 26(1):128-131. 

[122] Teunissen, J.J., Kwekkeboom, D.J., Kooij, P.P., 2005. Peptide receptor radionuclide therapy for non-radioiodine-avid differentiated thyroid carcinoma. J Nucl Med, 46(S1):107S-114S. 

[123] Thamboo, T., Tan, K.B., Wang, S.C., 2003. Extra-hepatic embolisation of Y-90 microspheres from selective internal radiation therapy (SIRT) of the liver. Pathology, 35(4):351-353. 

[124] Tomblyn, M., 2012. The role of bone-seeking radionuclides in the palliative treatment of patients with painful osteoblastic skeletal metastases. Cancer Control, 19(2):137-144. 

[125] Toohey, R.E., Stabin, M.G., Watson, E.E., 2000. The AAPM/RSNA physics tutorial for residents. Internal radiation dosimetry: principles and applications1 (CME available in print version and on RSNA Link). Radiographics, 20(2):533-546. 

[126] Torchilin, V.P., 2005. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov, 4(2):145-160. 

[127] Tripepi, G., Mattace Raso, F., Sijbrands, E., 2011. Inflammation and asymmetric dimethylarginine for predicting death and cardiovascular events in ESRD patients. Clin J Am Soc Nephrol, 6(7):1714-1721. 

[128] Troutner, D.E., 1987. Chemical and physical properties of radionuclides. Int J Radiat Appl Instrument Part B Nucl Med Biol, 14(3):171-176. 

[129] Turkmen, C., Ozturk, S., Unal, S.N., 2007. Monitoring the genotoxic effects of radiosynovectomy with Re-186 in paediatric age group undergoing therapy for haemophilic synovitis. Haemophilia, 13(1):57-64. 

[130] Ugur, O., Gedik, G.K., Atilla, B., 2008. Radiosynovectomy: current status in the management of arthritic conditions. Nucl Med Commun, 29(9):755-758. 

[131] Valkema, R., Pauwels, S., Kvols, L.K., 2006. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med, 36(2):147-156. 

[132] Vandergrift, W.A., Patel, S.J., 2006. Convection-enhanced delivery of immunotoxins and radioisotopes for treatment of malignant gliomas. Neurosurg Focus, 20(4):E13

[133] vande Streek, P., Carretta, R., Weiland, F.L., 1994. Bone pain and radionuclide therapy. West J Med, 161(4):409

[134] Villa, A., Trachsel, E., Kaspar, M., 2008. A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivoInt J Cancer, 122(11):2405-2413. 

[135] Volkert, W.A., Goeckeler, W.F., Ehrhardt, G.J., 1991. Therapeutic radionuclides: production and decay property considerations. J Nucl Med, 32(1):174-185. 

[136] Weber, D., Eckerman, K., Dillman, L.T., 1989.  MIRD: radionuclide Data and Decay Scheme. Society of Nuclear Medicine,New York :

[137] Weiner, R.E., Thakur, M.L., 2005. Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs, 19(3):145-163. 

[138] Werner, S.C., Coelho, B., Quimby, E.H., 1957. Ten year results of I-131 therapy of hyperthyroidism. Bull N Y Acad Med, 33(11):783-806. 

[139] Williams, L.E., DeNardo, G.L., Meredith, R.F., 2008. Targeted radionuclide therapy. Med Phys, 35(7):3062-3068. 

[140] Witzig, T.E., Gordon, L.I., Cabanillas, F., 2002. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol, 20(10):2453-2463. 

[141] Wu, L., Yang, Y.F., Ge, N.J., 2012. Hepatic artery injection of 131I-labelled metuximab combined with chemoembolization for intermediate hepatocellular carcinoma: a prospective nonrandomized study. Eur J Nucl Med Mol Imaging, 39(8):1306-1315. 

[142] Zaknun, J.J., Bodei, L., Mueller-Brand, J., 2013. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging, 40(5):800-816. 

[143] Zweit, J., 1996. Radionuclides and carrier molecules for therapy. Phys Med Biol, 41(10):1905

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE