Full Text:   <3878>

Summary:  <1741>

CLC number: R749.4

On-line Access: 2015-01-05

Received: 2014-06-17

Revision Accepted: 2014-11-06

Crosschecked: 2014-12-26

Cited: 11

Clicked: 6018

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hui-yu ZHANG

http://orcid.org/0000-0003-1017-8876

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.1 P.62-69

http://doi.org/10.1631/jzus.B1400166


Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice


Author(s):  Hui-yu Zhang, Yu-nan Zhao, Zhong-li Wang, Yu-fang Huang

Affiliation(s):  Laboratory of Pathological Sciences, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; more

Corresponding email(s):   huiyuzhang615@126.com, zhaoyunan-js@163.com

Key Words:  Glycogen, Corticosterone, Stress, Depression, Hippocampus


Hui-yu Zhang, Yu-nan Zhao, Zhong-li Wang, Yu-fang Huang. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice[J]. Journal of Zhejiang University Science B, 2015, 16(1): 62-69.

@article{title="Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice",
author="Hui-yu Zhang, Yu-nan Zhao, Zhong-li Wang, Yu-fang Huang",
journal="Journal of Zhejiang University Science B",
volume="16",
number="1",
pages="62-69",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400166"
}

%0 Journal Article
%T Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice
%A Hui-yu Zhang
%A Yu-nan Zhao
%A Zhong-li Wang
%A Yu-fang Huang
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 1
%P 62-69
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400166

TY - JOUR
T1 - Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice
A1 - Hui-yu Zhang
A1 - Yu-nan Zhao
A1 - Zhong-li Wang
A1 - Yu-fang Huang
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 1
SP - 62
EP - 69
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400166


Abstract: 
Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

慢性皮质酮降低海马糖原水平及诱导小鼠抑郁样行为

目的:探讨慢性皮质酮(CORT)注射对脑糖原水平以及小鼠抑郁样行为的影响。
创新点:首次发现长期注射皮质酮可减少海马糖原浓度,降低糖原合酶活性,但增加糖原磷酸化酶活性。
方法:将40只雄性C57BL/6N小鼠随机分为正常对照组与模型组。对模型组小鼠进行连续四周的CORT皮下注射,构建慢性应激抑郁障碍小鼠模型。采用强迫游泳和悬尾实验,验证慢性应激模型的建立;采用放免法,测定小鼠血清中CORT水平;采用蛋白免疫印迹法,检测海马神经微丝轻链(NF-L)和突触囊泡蛋白(SYP)的表达水平;采用酶法,检测海马组织的糖原浓度以及糖原合成酶和糖原磷酸化酶的活性。
结论:慢性CORT注射引起的海马神经元损伤和诱导小鼠抑郁样行为,可能与CORT降低海马糖原水平有关。

关键词:皮质酮;应激;抑郁症;糖原;海马

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Allaman, I., Pellerin, L., Magistretti, P.J., 2004. Glucocorticoids modulate neurotransmitter-induced glycogen metabolism in cultured cortical astrocytes. J. Neurochem., 88(4):900-908.

[2]Banasr, M., Duman, R.S., 2008. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol. Psychiatry, 64(10):863-870.

[3]Brown, A.M., Tekkök, S.B., Ransom, B.R., 2003. Glycogen regulation and functional role in mouse white matter. J. Physiol., 549(2):501-512.

[4]Brown, A.M., Sickmann, H.M., Fosgerau, K., et al., 2005. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J. Neurosci. Res., 79(1-2):74-80.

[5]Cotter, D., Mackay, D., Chana, G., et al., 2002. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb. Cortex, 12(4):386-394.

[6]Dienel, G.A., Cruz, N.F., 2004. Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem. Int., 45(2-3):321-351.

[7]Dombro, R.S., Bender, A.S., Norenberg, M.D., 2000. Association between cell swelling and glycogen content in cultured astrocytes. Int. J. Devl. Neurosci., 18(2-3):161-169.

[8]Duric, V., Banasr, M., Stockmeier, C.A., et al., 2013. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int. J. Neuropsychopharmacol., 16(1):69-82.

[9]Greenberg, C.C., Jurczak, M.J., Danos, A.M., et al., 2006. Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways. Am. J. Physiol. Endocrinol. Metab., 291(1):E1-E8.

[10]Ibrahim, L., Duncan, W., Luckenbaugh, D.A., et al., 2011. Rapid antidepressant changes with sleep deprivation in major depressive disorder are associated with changes in vascular endothelial growth factor (VEGF): a pilot study. Brain Res. Bull., 86(1-2):129-133.

[11]Jarcho, M.R., Slavich, G.M., Tylova-Stein, H., et al., 2013. Dysregulated diurnal cortisol pattern is associated with glucocorticoid resistance in women with major depressive disorder. Biol. Psychol., 93(1):150-158.

[12]Koizumi, S., Fujishita, K., Tsuda, M., et al., 2003. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. PNAS, 100(19):11023-11028.

[13]Kong, J., Shepel, P.N., Holden, C.P., et al., 2002. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J. Neurosci., 22(13):5581-5587.

[14]Marks, W., Fournier, N.M., Kalynchuk, L.E., 2009. Repeated expore to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength. Physiol. Behav., 98(1-2):67-72.

[15]Numakawa, T., Adachi, N., Richards, M., et al., 2013. Brain-derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system. Neuroscience, 239:157-172.

[16]Palsamy, P., Subramanian, S., 2009. Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Chem. Biol. Interact., 179(2-3):356-362.

[17]Pfeiffer-Guglielmi, B., Fleckenstein, B., Jung, G., et al., 2003. Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J. Neurochem., 85(1):73-81.

[18]Porsolt, R.D., Anton, G., Blavet, N., et al., 1978. Behavioral despair in rats: a new model sensitive to antidepressant treatments. Eur. J. Pharmacol., 47(4):379-391.

[19]Rajkowska, G., Miguel-Hidalgo, J.J., 2007. Gliogenesis and glial pathology in depression. CNS Neurol. Disord. Drug Targets, 6(3):219-233.

[20]Russell, V.A., Oades, R.D., Tannock, R., et al., 2006. Response variability in Attention-Deficit/Hyperactivity Disorder: a neuronal and glial energetics hypothesis. Behav. Brain Funct., 2:30.

[21]Sickmann, H.M., Waagepetersen, H.S., Schousboe, A., et al., 2012. Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochem. Int., 60(3):267-275.

[22]Steru, L., Chermat, R., Thierry, B., et al., 1985. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology, 85(3):367-370.

[23]Suzuki, A., Stern, S.A., Bozdagi, O., et al., 2011. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 144(5):810-823.

[24]Tesfaye, N., Seaquist, E.R., Oz, G., 2011. Noninvasive measurement of brain glycogen by nuclear magnetic resonance spectroscopy and its application to the study of brain metabolism. J. Neurosci. Res., 89(12):1905-1912.

[25]Tsoi, B., He, R.R., Yang, D.H., et al., 2011. Carnosine ameliorates stress-induced glucose metabolism disorder in restrained mice. J. Pharmacol. Sci., 117(4):223-229.

[26]Waters, P., McCormick, C.M., 2011. Caveats of chronic exogenous corticosterone treatments in adolescent rats and effects on anxiety-like and depressive behavior and hypothalamic-pituitary-adrenal (HPA) axis function. Biol. Mood Anxiety Disord., 1(1):4.

[27]Xu, L., Sun, H., 2010. Pharmacological manipulation of brain glycogenolysis as a therapeutic approach to cerebral ischemia. Mini-Rev. Med. Chem., 10(12):1188-1193.

[28]Yau, S.Y., Lau, B.W., Tong, J.B., et al., 2011. Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats. PLoS ONE, 6(9):e24263.

[29]Zhao, Y., Ma, R., Shen, J., et al., 2008. A mouse model of depression induced by repeated corticosterone injections. Eur. J. Pharmacol., 581(1-2):113-120.

[30]Zhao, Y., Xie, W., Dai, J., et al., 2009. The varying effects of short-term and long-term corticosterone injections on depression-like behavior in mice. Brain Res., 1261:82-90.

[31]Zhao, Y., Wang, Z., Dai, J., et al., 2012. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice. Behav. Brain Res., 228(2):339-350.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE