Full Text:   <2579>

Summary:  <1756>

Suppl. Mater.: 

CLC number: S828

On-line Access: 2015-06-08

Received: 2014-10-03

Revision Accepted: 2015-01-31

Crosschecked: 2015-05-13

Cited: 5

Clicked: 4146

Citations:  Bibtex RefMan EndNote GB/T7714


Hong-fu Zhang


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.6 P.465-478


iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes

Author(s):  Ji-ze Zhang, Yang Gao, Qing-ping Lu, Ren-na Sa, Hong-fu Zhang

Affiliation(s):  State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; more

Corresponding email(s):   zhanghf6565@vip.sina.com

Key Words:  Non-starch polysaccharide enzymes (NSPEs), Longissimus muscle, Proteomics, Growing pigs

Ji-ze Zhang, Yang Gao, Qing-ping Lu, Ren-na Sa, Hong-fu Zhang. iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes[J]. Journal of Zhejiang University Science B, 2015, 16(6): 465-478.

@article{title="iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes",
author="Ji-ze Zhang, Yang Gao, Qing-ping Lu, Ren-na Sa, Hong-fu Zhang",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes
%A Ji-ze Zhang
%A Yang Gao
%A Qing-ping Lu
%A Ren-na Sa
%A Hong-fu Zhang
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 6
%P 465-478
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400266

T1 - iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes
A1 - Ji-ze Zhang
A1 - Yang Gao
A1 - Qing-ping Lu
A1 - Ren-na Sa
A1 - Hong-fu Zhang
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 6
SP - 465
EP - 478
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400266

non-starch polysaccharide enzymes (NSPEs) have long been used in the feed production of monogastric animals to degrade non-starch polysaccharide to oligosaccharides and promote growth performance. However, few studies have been conducted on the effect of such enzymes on skeletal muscle in monogastric animals. To elucidate the mechanism of the effect of NSPEs on skeletal muscle, an isobaric tag for relative and absolute quantification (iTRAQ) for differential proteomic quantitation was applied to investigate alterations in the proteome in the longissimus muscle (LM) of growing pigs after a 50-d period of supplementation with 0.6% NSPEs in the diet. A total of 51 proteins were found to be differentially expressed in the LM between a control group and the NSPE group. Functional analysis of the differentially expressed protein species showed an increased abundance of proteins related to energy production, protein synthesis, muscular differentiation, immunity, oxidation resistance and detoxification, and a decreased abundance of proteins related to inflammation in the LM of the pigs fed NSPEs. These findings have important implications for understanding the mechanisms whereby dietary supplementation with NSPEs enzymes can promote growth performance and improve muscular metabolism in growing pigs.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abdul-Ghani, M.A., DeFronzo, R.A., 2010. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol., 2010:476279.

[2]Aldunate, R., Casar, J.C., Brandan, E., et al., 2004. Structural and functional organization of synaptic acetylcholinesterase. Brain Res. Rev., 47(1-3):96-104.

[3]Ao, X., Meng, Q.W., Yan, L., et al., 2010. Effects of non-starch polysaccharide-degrading enzymes on nutrient digestibility, growth performance and blood profiles of growing pigs fed a diet based on corn and soybean meal. Asian Australas. J. Anim. Sci., 23(12):1632-1638.

[4]Arikkath, J., Campbell, K.P., 2003. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol., 13(3):298-307.

[5]Bailey, M.J., Poutanen, K., 1989. Production of xylanolytic enzymes by strains of Aspergillus. Appl. Microbiol. Biotechnol., 30(1):5-10.

[6]Bindelle, J., Pieper, R., Montoya, C.A., et al., 2011. Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract. FEMS Microbiol. Ecol., 76(3):553-563.

[7]Buchanan, N.P., Kimbler, L.B., Parsons, A.S., et al., 2007. The effects of nonstarch polysaccharide enzyme addition and dietary energy restriction on performance and carcass quality of organic broiler chickens. J. Appl. Poult. Res., 16(1):1-12.

[8]Cha, M.K., Kim, I.H., 2009. Preferential overexpression of glutaredoxin3 in human colon and lung carcinoma. Cancer Epidemiol., 33(3-4):281-287.

[9]Erfle, J.D., Teather, R.M., Wood, R.M., et al., 1988. Purification and properties of a 1,3-1,4-β-D-glucanase (lichenase, 1,3-1,4-β-D-glucanohydrolase, EC from Bacteroides succinogenes cloned in Escherichia coli. Biochem. J., 255(3):833-841.

[10]Fagerlund, M.J., Eriksson, L.I., 2009. Current concepts in neuromuscular transmission. Br. J. Anaesth., 103(1):108-114.

[11]Fournier, T., Medjoubi, N.N., Porquet, D., 2000. Alpha-1-acid glycoprotein. Biochim. Biophys. Acta, 1482(1-2):157-171.

[12]Franzini-Armstrong, C., 2009. Architecture and regulation of the Ca2+ delivery system in muscle cells. Appl. Physiol. Nutr. Metab., 34(3):323-327.

[13]Funato, Y., Miki, H., 2007. Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid. Redox Signal., 9(8):1035-1057.

[14]Furuhashi, M., Hotamisligil, G.S., 2008. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov., 7(6):489-503.

[15]Gdala, J., Johansen, N.H., Bach Knudsen, K.E., et al., 1997. The digestibility of carbohydrates, protein and fat in the small and large intestine of piglets fed non-supplemented and enzyme supplemented diets. Anim. Feed Sci. Tech., 65(1-4):15-33.

[16]Gordon, A.M., Homsher, E., Regnier, M., 2000. Regulation of contraction in striated muscle. Physiol. Rev., 80(2):853-924.

[17]Gurvitz, A., Mursula, A.M., Firzinger, A., et al., 1998. Peroxisomal ∆3-cis-∆2-trans-enoyl-CoA isomerase encoded by ECI1 is required for growth of the yeast Saccharomyces cerevisiae on unsaturated fatty acids. J. Biol. Chem., 273(47):31366-31374.

[18]Hajati, H., Rezaei, M., Sayyahzadeh, H., 2009. The effects of enzyme supplementation on performance, carcass characteristics and some blood parameters of broilers fed on corn-soybean meal-wheat diets. Int. J. Poult. Sci., 8(12):1199-1205.

[19]Hakimov, H.A., Walters, S., Wright, T.C., et al., 2009. Application of iTRAQ to catalogue the skeletal muscle proteome in pigs and assessment of effects of gender and diet dephytinization. Proteomics, 9(16):4000-4016.

[20]Hirota, K., Matsui, M., Murata, M., et al., 2000. Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-κB, AP-1, and CREB activation in HEK293 cells. Biochem. Biophys. Res. Commun., 274(1):177-182.

[21]Hood, D.A., 2009. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl. Physiol. Nutr. Metab., 34(3):465-472.

[22]Huang, J., Zhang, Y., Zhou, Y., et al., 2013. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J. Agric. Food Chem., 61(36):8565-8572.

[23]Huang, Y., Wang, Y., Lin, X., et al., 2014. Effects of supplemental copper on the serum lipid profile, meat quality, and carcass composition of goat kids. Biol. Trace Elem. Res., 159(1-3):140-146.

[24]Janeway, C.A.Jr., Travers, P., Walport, M., et al., 2001. Immunobiology: the Immune System in Health and Disease, 5th Ed. Garland Science, New York, p.47-65.

[25]Kataoka, T., Holler, N., Micheau, O., et al., 2001. Bcl-rambo, a novel Bcl-2 homologue that induces apoptosis via its unique C-terminal extension. J. Biol. Chem., 276(22):19548-19554.

[26]Kiarie, E., Romero, L.F., Nyachoti, C.M., 2013. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev., 26(1):71-88.

[27]Kim, J.C., Mullan, B.P., Nicholls, R.R., et al., 2011. Effect of Australian sweet lupin (Lupinus angustifolius L.) inclusion levels and enzyme supplementation on the performance, carcass composition and meat quality of grower/ finisher pigs. Anim. Prod. Sci., 51(1):37-43.

[28]Kim, J.S., Ingale, S.L., Lee, S.H., et al., 2013. Effects of energy levels of diet and β-mannanase supplementation on growth performance, apparent total tract digestibility and blood metabolites in growing pigs. Anim. Feed Sci. Tech., 186(1-2):64-70.

[29]Kim, S., Nelson, P.G., 1998. Transcriptional regulation of the prothrombin gene in muscle. J. Biol. Chem., 273(19):11923-11929.

[30]Kitteringham, N.R., Abdullah, A., Walsh, J., et al., 2010. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. J. Proteomics, 73(8):1612-1631.

[31]Lecker, S.H., Jagoe, R.T., Gilbert, A., et al., 2004. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J., 18(1):39-51.

[32]Liu, J., He, J., Yu, J., et al., 2014. Birth weight alters the response to postnatal high-fat diet-induced changes in meat quality traits and skeletal muscle proteome of pigs. Br. J. Nutr., 111(10):1738-1747.

[33]Lowe, S.E., Theodorou, M.K., Trinci, A.P., 1987. Cellulase and xylanase of an anaerobic rumen fugus grown on wheat straw, wheat straw holocellulose, cellulose, xylan. Appl. Environ. Microbiol., 53(6):1216-1223.

[34]Luo, J., Zheng, A., Meng, K., et al., 2013. Proteome changes in the intestinal mucosa of broiler (Gallus gallus) activated by probiotic Enterococcus faecium. J. Proteomics, 91:226-241.

[35]Martin, J., Maurhofer, O., Bellance, N., et al., 2013. Disruption of the histidine triad nucleotide-binding Hint2 gene in mice affects glycemic control and mitochondrial function. Hepatology, 57(5):2037-2048.

[36]McBane, R.D., Miller, R.S., Hassinger, N.L., et al., 1997. Tissue prothrombin. Universal distribution in smooth muscle. Arterioscler. Thromb. Vasc. Biol., 17(11):2430-2436.

[37]Michele, D.E., Campbell, K.P., 2003. Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J. Biol. Chem., 278(18):15457-15460.

[38]Minárik, P., Tomásková, N., Kollárová, M., et al., 2002. Malate dehydrogenases—structure and function. Gen. Physiol. Biophys., 21(3):257-265.

[39]Mukherjee, B., Salavaggione, O.E., Pelleymounter, L.L., et al., 2006. Glutathione S-transferase omega 1 and omega 2 pharmacogenomics. Drug Metab. Dispos., 34(7):1237-1246.

[40]NRC (National Research Council), 2012. Nutrient Requirements of Swine: Eleventh Revised Edition. The National Academies Press, Washington, DC.

[41]Ohlendieck, K., 2011. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skelet. Muscle, 1(1):6.

[42]Olsen, J.V., Blagoev, B., Gnad, F., et al., 2006. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 127(3):635-648.

[43]O'Shea, C.J., Mc Alpine, P.O., Solan, P., et al., 2014. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower-finisher pigs. Anim. Feed Sci. Tech., 189:88-97.

[44]Ottaway, J.H., McClellan, J.A., Saunderson, C.L., 1981. Succinic thiokinase and metabolic control. Int. J. Biochem., 13(4):401-410.

[45]Piñeiro, M., Andrés, M., Iturralde, M., et al., 2004. ITIH4 (inter-alpha-trypsin inhibitor heavy chain 4) is a new acute-phase protein isolated from cattle during experimental infection. Infect. Immun., 72(7):3777-3782.

[46]Ramadoss, J., Magness, R.R., 2012. Alcohol-induced alterations in maternal uterine endothelial proteome: a quantitative iTRAQ mass spectrometric approach. Reprod. Toxicol., 34(4):538-544.

[47]Salem, M., Kenney, P.B., Rexroad, C.E., et al., 2010. Proteomic signature of muscle atrophy in rainbow trout. J. Proteomics, 73(4):778-789.

[48]Sandri, M., 2010. Autophagy in skeletal muscle. FEBS Lett., 584(7):1411-1416.

[49]Shao, C., Liu, Y., Ruan, H., et al., 2010. Shotgun proteomics analysis of hibernating arctic ground squirrels. Mol. Cell. Proteomics, 9(2):313-326.

[50]Silva, S.S., Smithard, R.R., 2002. Effect of enzyme supplementation of a rye-based diet on xylanase activity in the small intestine of broilers, on intestinal crypt cell proliferation and on nutrient digestibility and growth performance of the birds. Br. Poult. Sci., 43(2):274-282.

[51]Su, L., Cao, L., Zhou, R., et al., 2013. Identification of novel biomarkers for sepsis prognosis via urinary proteomic analysis using iTRAQ labeling and 2D-LC-MS/MS. PLoS ONE, 8(1):e54237.

[52]Suryawan, A., Davis, T.A., 2014. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs. J. Anim. Sci. Biotechnol., 5(1):8.

[53]Świątkiewicz, M., Hanczakowska, E., Olszewska, A., 2013. Effect of corn distillers dried grains with solubles (DDGS) in diets with NSP-hydrolyzing enzymes on growth performance, carcass traits and meat quality of pigs. Ann. Anim. Sci., 13(2):313-326.

[54]Turnberg, D., Botto, M., 2003. The regulation of the complement system: insights from genetically-engineered mice. Mol. Immunol., 40(2-4):145-153.

[55]Turyk, Z., Osek, M., Olkowski, B., et al., 2014. Pig feeding under the potato-green forage base system with or without addition of herbs versus a concentrate based system: effect on post-slaughter performance and pork characteristics. Asian Australas. J. Anim. Sci., 27(5):683-689.

[56]Uthai, K., Jattupornpong, S., Vandepitte, W., et al., 2004. Effects of dietary supplementation of enzymes in soybean meal rich diet on performance of growing-finishing (20–100 kg) pigs. Kasetsart J. (Nat. Sci.), 38(Suppl. 6):125-131.

[57]VerHague, M.A., Cheng, D., Weinberg, R.B., et al., 2013. Apolipoprotein A-IV expression in mouse liver enhances triglyceride secretion and reduces hepatic lipid content by promoting very low density lipoprotein particle expansion. Arterioscler. Thromb. Vasc. Biol., 33(11):2501-2508.

[58]Walsh, M.C., Geraert, P.A., Maillard, R., et al., 2012. The effect of a non-starch polysaccharide-hydrolysing enzyme (Rovabio® Excel) on feed intake and body condition of sows during lactation and on progeny growth performance. Animal, 6(10):1627-1633.

[59]Wang, J.J., Li, D.F., Dangott, L.J., et al., 2006. Proteomics and its role in nutrition research. J. Nutr., 136(7):1759-1762.

[60]Wang, L.H., Strittmatter, S.M., 1997. Brain CRMP forms heterotetramers similar to liver dihydropyrimidinase. J. Neurochem., 69(6):2261-2269.

[61]Wang, Z.R., Qiao, S.Y., Lu, W.Q., et al., 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poult. Sci., 84(6):875-881.

[62]Wassler, M., Fries, E., 1993. Proteolytic cleavage of haptoglobin occurs in a subcompartment of the endoplasmic reticulum: evidence from membrane fusion in vitro. J. Cell Biol., 123(2):285-291.

[63]Welberry Smith, M.P., Zougman, A., Cairns, D.A., et al., 2013. Serum aminoacylase-1 is a novel biomarker with potential prognostic utility for long-term outcome in patients with delayed graft function following renal transplantation. Kidney Int., 84(6):1214-1225.

[64]Willamil, J., Badiola, I., Devillard, E., et al., 2012. Wheat-barley-rye- or corn-fed growing pigs respond differently to dietary supplementation with a carbohydrase complex. J. Anim. Sci., 90(3):824-832.

[65]Woodgett, J.R., 1994. Regulation and functions of the glycogen synthase kinase-3 subfamily. Semin. Cancer Biol., 5(4):269-275.

[66]Yang, Z.B., Yang, W.R., Jiang, S.Z., et al., 2010. Effects of a thermotolerant multi-enzyme product on nutrient and energy utilization of broilers fed mash or crumbled corn-soybean meal diets. J. Appl. Poult. Res., 19(1):38-45.

[67]Ye, J., Fang, L., Zheng, H., et al., 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res., 34(Suppl. 2):W293-W297.

[68]Yin, Y.L., Baidoo, S.K., Schulze, H., et al., 2001. Effects of supplementing diets containing hulless barley varieties having different levels of non-starch polysaccharides with β-glucanase and xylanase on the physiological status of the gastrointestinal tract and nutrient digestibility of weaned pigs. Livest. Prod. Sci., 71(2-3):97-107.

[69]Zduńczyk, Z., Jankowski, J., Juśkiewicz, J., et al., 2013. Effect of different dietary levels of low-glucosinolate rapeseed (canola) meal and non-starch polysaccharide-degrading enzymes on growth performance and gut physiology of growing turkeys. Can. J. Anim. Sci., 93(3):353-362.

[70]Zhong, W., Jiang, Z., Zheng, C., et al., 2011. Relationship between proteome changes of Longissimus muscle and intramuscular fat content in finishing pigs fed conjugated linoleic acid. Br. J. Nutr., 105(1):1-9.

[71]Zi, J., Zhang, J., Wang, Q., et al., 2013. Stress responsive proteins are actively regulated during rice (Oryza sativa) embryogenesis as indicated by quantitative proteomics analysis. PLoS ONE, 8(9):e74229.

[72]Zou, J., Zheng, P., Zhang, K., et al., 2013. Effects of exogenous enzymes and dietary energy on performance and digestive physiology of broilers. J. Anim. Sci. Biotechnol., 4(1):14.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE