Full Text:   <2814>

Summary:  <1731>

CLC number: S852.4

On-line Access: 2017-06-05

Received: 2016-05-17

Revision Accepted: 2016-08-17

Crosschecked: 2017-05-08

Cited: 1

Clicked: 5398

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

An Lyu

http://orcid.org/0000-0002-3268-5193

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.6 P.481-491

http://doi.org/10.1631/jzus.B1600224


Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharide-induced inflammatory injury


Author(s):  An Lyu, Jia-jia Chen, Hui-chuan Wang, Xiao-hong Yu, Zhi-cong Zhang, Ping Gong, Lin-shu Jiang, Feng-hua Liu

Affiliation(s):  Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China

Corresponding email(s):   jls@bac.edu.cn, liufenghuabua@126.com

Key Words:  Bovine endometrial epithelial cell, Cytokine, Inflammatory injury, Punicalagin


An Lyu, Jia-jia Chen, Hui-chuan Wang, Xiao-hong Yu, Zhi-cong Zhang, Ping Gong, Lin-shu Jiang, Feng-hua Liu. Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharide-induced inflammatory injury[J]. Journal of Zhejiang University Science B, 2017, 18(6): 481-491.

@article{title="Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharide-induced inflammatory injury",
author="An Lyu, Jia-jia Chen, Hui-chuan Wang, Xiao-hong Yu, Zhi-cong Zhang, Ping Gong, Lin-shu Jiang, Feng-hua Liu",
journal="Journal of Zhejiang University Science B",
volume="18",
number="6",
pages="481-491",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600224"
}

%0 Journal Article
%T Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharide-induced inflammatory injury
%A An Lyu
%A Jia-jia Chen
%A Hui-chuan Wang
%A Xiao-hong Yu
%A Zhi-cong Zhang
%A Ping Gong
%A Lin-shu Jiang
%A Feng-hua Liu
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 6
%P 481-491
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600224

TY - JOUR
T1 - Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharide-induced inflammatory injury
A1 - An Lyu
A1 - Jia-jia Chen
A1 - Hui-chuan Wang
A1 - Xiao-hong Yu
A1 - Zhi-cong Zhang
A1 - Ping Gong
A1 - Lin-shu Jiang
A1 - Feng-hua Liu
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 6
SP - 481
EP - 491
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600224


Abstract: 
Objective: Bovine endometritis is one of the most common reproductive disorders in cattle. The aim of this study was to investigate the anti-inflammation potential of punicalagin in lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (bEECs) and to uncover the underlying mechanisms. Methods: bEECs were stimulated with different concentrations (1, 10, 30, 50, and 100 μg/ml) of LPS for 3, 6, 9, 12, and 18 h. MTT assay was used to assess cell viability and to identify the conditions for inflammatory injury and effective concentrations of punicalagin. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess gene expression of pro-inflammatory cytokines. Western blotting was used to assess levels of inflammation-related proteins. Results: Treatment of bEECs with 30 µg/ml LPS for 12 h induced cell injury and reduced cell viability. punicalagin (5, 10, or 20 µg/ml) pretreatment significantly decreased LPS-induced productions of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) in bEECs. Molecular research showed that punicalagin inhibited the activation of the upstream mediator nuclear factor-κB (NF-κB) by suppressing the production of inhibitor κBα (IκBα) and phosphorylation of p65. Results also indicated that punicalagin can suppress the phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Conclusions: punicalagin may attenuate LPS-induced inflammatory injury and provide a potential option for the treatment of dairy cows with Escherichia coli endometritis.

安石榴苷对脂多糖诱导奶牛子宫内膜上皮细胞炎症损伤的保护作用

目的:评估安石榴苷对脂多糖诱导奶牛子宫内膜上皮细胞炎症损伤的保护作用,并初步探讨其作用机制。
创新点:首次证明安石榴苷对脂多糖诱导奶牛子宫内膜上皮细胞炎症损伤具有保护作用,且此作用与核转录因子κB(NF-κB)和丝裂原活化蛋白激酶(MAPK)信号通路的抑制相关。
方法:用不同浓度的脂多糖(1、10、30、50和100 µg/ml)刺激奶牛子宫内膜上皮细胞3、6、9、12和18 h,筛选出建立炎症损伤的最佳作用浓度和时间。安石榴苷预处理细胞2 h后用脂多糖刺激12 h,用逆转录聚合酶链式反应(RT-PCR)检测炎症因子白细胞介素1β(IL-1β)、白细胞介素6(IL-6)、白细胞介素8(IL-8)及肿瘤坏死因子α(TNF-α)的表达。用蛋白质免疫印迹试验(Western blotting)的方法检测核因子κB抑制蛋白α(IκBα)、磷酸化的p65、p38、c-Jun氨基末端激酶(JNK)和细胞外调节蛋白激酶(ERK)的表达水平。
结论:MTT结果显示,30 µg/ml 脂多糖刺激奶牛子宫内膜上皮细胞12 h能够造成细胞活力下降和形态改变(图2和3)。RT-PCR结果显示,安石榴苷预处理后炎症因子显著降低(图4)。Western blotting结果显示,安石榴苷预处理能显著抑制IκBα降解以及p65、p38、JNK和ERK的磷酸化表达水平(图5和6)。综上所述,安石榴苷对脂多糖诱导奶牛子宫内膜上皮细胞炎症损伤具有保护作用,在治疗奶牛子宫内膜炎中具有重要价值。

关键词:奶牛子宫内膜上皮细胞;炎症因子;炎性损伤;安石榴苷

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aqil, F., Munagala, R., Vadhanam, M.V., et al., 2012. Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk. Food Res. Int., 49(1):345-353.

[2]Azawi, O.I., 2008. Postpartum uterine infection in cattle. Anim. Reprod. Sci., 105(3-4):187-208.

[3]Brodzki, P., Bochniarz, M., Brodzki, A., et al., 2014. Trueperella pyogenes and Escherichia coli as an etiological factor of endometritis in cows and the susceptibility of these bacteria to selected antibiotics. Pol. J. Vet. Sci., 17(4):657-664.

[4]Chapwanya, A., Meade, K.G., Doherty, M.L., et al., 2013. Endometrial epithelial cells are potent producers of tracheal antimicrobial peptide and serum amyloid A3 gene expression in response to E. coli stimulation. Vet. Immunol. Immunopathol., 151(1-2):157-162.

[5]Checker, R., Patwardhan, R.S., Sharma, D., et al., 2012. Schisandrin B exhibits anti-inflammatory activity through modulation of the redox-sensitive transcription factors Nrf2 and NF-κB. Free Radic. Biol. Med., 53(7): 1421-1430.

[6]Choi, H.J., Kang, O.H., Park, P.S., et al., 2007. Mume fructus water extract inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages. J. Med. Food, 10(3):460-466.

[7]Corbetta, S., Vicentini, L., Ferrero, S., et al., 2005. Activity and function of the nuclear factor kappaB pathway in human parathyroid tumors. Endocr. Relat. Cancer, 12(4): 929-937.

[8]Fu, Y., Liu, B., Feng, X., et al., 2013. Lipopolysaccharide increases Toll-like receptor 4 and downstream Toll-like receptor signaling molecules expression in bovine endometrial epithelial cells. Vet. Immunol. Immunopathol., 151(1-2):20-27.

[9]Gu, J.H., Ge, J.B., Li, M., et al., 2012. Inhibition of NF-κB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur. J. Pharm. Sci., 47(4):652-660.

[10]Herath, S., Fischer, D.P., Werling, D., et al., 2006. Expression and function of Toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology, 147(1):562-570.

[11]Hines, D.J., Choi, H.B., Hines, R.M., et al., 2013. Prevention of LPS-induced microglia activation, cytokine production and sickness behavior with TLR4 receptor interfering peptides. PLoS ONE, 8(3):e60388.

[12]Huang, B., Xiao, D., Tan, B., et al., 2016. Chitosan oligosaccharide reduces intestinal inflammation that involves calcium-sensing receptor (CaSR) activation in lipopolysaccharide (LPS)-challenged piglets. J. Agric. Food Chem., 64(1):245-252.

[13]Janowski, T., Barański, W., Łukasik, K., et al., 2013. Prevalence of subclinical endometritis in repeat breeding cows and mRNA expression of tumor necrosis factor α and inducible nitric oxide synthase in the endometrium of repeat breeding cows with and without subclinical endometritis. Pol. J. Vet. Sci., 16(4):693-699.

[14]Jean-Gilles, D., Li, L., Vaidyanathan, V.G., et al., 2013. Inhibitory effects of polyphenol punicalagin on type-II collagen degradation in vitro and inflammation in vivo. Chem. Biol. Interact., 205(2):90-99.

[15]Kasimanickam, R.K., Kasimanickam, V.R., Olsen, J.R., et al., 2013. Associations among serum pro- and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows. Reprod. Biol. Endocrinol., 11(1):103.

[16]Kawai, T., Akira, S., 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34(5):637-650.

[17]Khan, K.N., Kitajima, M., Hiraki, K., et al., 2009. Toll-like receptors in innate immunity: role of bacterial endotoxin and Toll-like receptor 4 in endometrium and endometriosis. Gynecol. Obstet. Invest., 68(1):40-52.

[18]Kulkarni, A.P., Mahal, H.S., Kapoor, S., et al., 2007. In vitro studies on the binding, antioxidant, and cytotoxic actions of punicalagin. J. Agric. Food Chem., 55(4):1491-1500.

[19]Kumar, H., Kaur, A., Kishor, N., et al., 2016. Prevalence of multiple antibiotic resistant nasal carriage MRSA among healthy population of border villages in Amritsar Region, Punjab, India. J. Clin. Diagn. Res., 10(5):DL01-DL02.

[20]Lim, J.Y., Hwang, B.Y., Hwang, K.W., et al., 2012. Methylalpinumisoflavone inhibits lipopolysaccharide-induced inflammation in microglial cells by the NF-kappaB and MAPK signaling pathway. Phytother. Res., 26(12):1948-1956.

[21]Ling, M., Li, Y., Xu, Y., et al., 2012. Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radic. Biol. Med., 52(9):1508-1518.

[22]Liu, M., Song, S., Li, H., et al., 2014. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide. J. Dairy Sci., 97(5):2856-2865.

[23]Mackeen, A.D., Packard, R.E., Ota, E., et al., 2015. Antibiotic regimens for postpartum endometritis. Cochrane Database Syst. Rev., (2):CD001067.

[24]Malinowski, E., Lassa, H., Markiewicz, H., et al., 2011. Sensitivity to antibiotics of Arcanobacterium pyogenes and Escherichia coli from the uteri of cows with metritis/endometritis. Vet. J., 187(2):234-238.

[25]Morimoto, Y., Kikuchi, K., Ito, T., et al., 2009. MK615 attenuates Porphyromonas gingivalis lipopolysaccharide-induced pro-inflammatory cytokine release via MAPK inactivation in murine macrophage-like RAW264.7 cells. Biochem. Biophys. Res. Commun., 389(1):90-94.

[26]Olajide, O.A., Kumar, A., Velagapudi, R., et al., 2014. Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia. Mol. Nutr. Food Res., 58(9):1843-1851.

[27]Pandrea, I., Xu, C., Stock, J.L., et al., 2016. Antibiotic and antiinflammatory therapy transiently reduces inflammation and hypercoagulation in acutely SIV-infected pigtailed macaques. PLoS Pathog., 12(1):e1005384.

[28]Peng, J., Wei, D., Fu, Z., et al., 2015. Punicalagin ameliorates lipopolysaccharide-induced acute respiratory distress syndrome in mice. Inflammation, 38(2):493-499.

[29]Qi, Z., Qi, S., Ling, L., et al., 2016. Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus. Int. Immunopharmacol., 35:265-271.

[30]Risco, A., del Fresno, C., Mambol, A., et al., 2012. p38γ and p38δ kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation. Proc. Natl. Acad. Sci. USA, 109(28):11200-11205.

[31]Ruimi, N., Rwashdeh, H., Wasser, S., et al., 2010. Daedalea gibbosa substances inhibit LPS-induced expression of iNOS by suppression of NF-κB and MAPK activities in RAW 264.7 macrophage cells. Int. J. Mol. Med., 25(3): 421-432.

[32]Sens, A., Heuwieser, W., 2013. Presence of Escherichia coli, Trueperella pyogenes, α-hemolytic streptococci, and coagulase-negative staphylococci and prevalence of subclinical endometritis. J. Dairy Sci., 96(10):6347-6354.

[33]Sheldon, I.M., Roberts, M.H., 2010. Toll-like receptor 4 mediates the response of epithelial and stromal cells to lipopolysaccharide in the endometrium. PLoS ONE, 5(9): e12906.

[34]Sheldon, I.M., Lewis, G.S., LeBlanc, S., et al., 2006. Defining postpartum uterine disease in cattle. Theriogenology, 65(8):1516-1530.

[35]Shimada, K., Daida, H., Ma-Krupa, W., et al., 2005. Lipopolysaccharide, CD14 and Toll-like receptors: an emerging link between innate immunity and atherosclerotic disease. Future Cardiol., 1(5):657-674.

[36]Soboll, G., Schaefer, T.M., Wira, C.R., 2006. Effect of Toll-like receptor (TLR) agonists on TLR and microbicide expression in uterine and vaginal tissues of the mouse. Am. J. Reprod. Immunol., 55(6):434-446.

[37]Taguri, T., Tanaka, T., Kouno, I., 2004. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull., 27(12):1965-1969.

[38]Turner, M.L., Cronin, J.G., Healey, G.D., et al., 2014. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology, 155(4):1453-1465.

[39]Ugurlu, O., Yaris, M., Oztekin, C.V., et al., 2010. Impacts of antibiotic and anti-inflammatory therapies on serum prostate-specific antigen levels in the presence of prostatic inflammation: a prospective randomized controlled trial. Urol. Int., 84(2):185-190.

[40]Wagener, K., Grunert, T., Prunner, I., et al., 2014. Dynamics of uterine infections with Escherichia coli, Streptococcus uberis and Trueperella pyogenes in post-partum dairy cows and their association with clinical endometritis. Vet. J., 202(3):527-532.

[41]Wang, H.W., Wu, T., Qi, J.Y., et al., 2013. Salidroside attenuates LPS-stimulated activation of THP-1 cell-derived macrophages through down-regulation of MAPK/NF-κB signaling pathways. J. Huazhong Univ. Sci. Technol. Med. Sci., 33(4):463-469.

[42]Wang, Z., Jiang, W., Zhang, Z., et al., 2012. Nitidine chloride inhibits LPS-induced inflammatory cytokines production via MAPK and NF-kappaB pathway in RAW 264.7 cells. J. Ethnopharmacol., 144(1):145-150.

[43]Ward, E., Duff, P., 2016. A comparison of 3 antibiotic regimens for prevention of postcesarean endometritis: an historical cohort study. Am. J. Obstet. Gynecol., 214(6): 751.e1-751.e4.

[44]Wira, C.R., Grant-Tschudy, K.S., Crane-Godreau, M.A., 2005. Epithelial cells in the female reproductive tract: a central role as sentinels of immune protection. Am. J. Reprod. Immunol., 53(2):65-76.

[45]Wu, H., Zhao, G., Jiang, K., et al., 2016. Engeletin alleviates lipopolysaccharide-induced endometritis in mice by inhibiting TLR4-mediated NF-κB activation. J. Agric. Food Chem., 64(31):6171-6178.

[46]Xu, L., He, S., Yin, P., et al., 2016. Punicalagin induces Nrf2 translocation and HO-1 expression via PI3K/Akt, protecting rat intestinal epithelial cells from oxidative stress. Int. J. Hyperthermia, 32(5):465-473.

[47]Xu, X., Yin, P., Wan, C., et al., 2014. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation. Inflammation, 37(3):956-965.

[48]Yaidikar, L., Thakur, S., 2015. Punicalagin attenuated cerebral ischemia-reperfusion insult via inhibition of proinflammatory cytokines, up-regulation of Bcl-2, down-regulation of Bax, and caspase-3. Mol. Cell. Biochem., 402(1-2): 141-148.

[49]Yaidikar, L., Byna, B., Thakur, S.R., 2014. Neuroprotective effect of punicalagin against cerebral ischemia reperfusion-induced oxidative brain injury in rats. J. Stroke Cerebrovasc. Dis., 23(10):2869-2878.

[50]Yang, Y., Xiu, J., Zhang, L., et al., 2012. Antiviral activity of punicalagin toward human enterovirus 71 in vitro and in vivo. Phytomedicine, 20(1):67-70.

[51]Yoon, Y.K., Park, D.W., Sohn, J.W., et al., 2016. Effects of inappropriate empirical antibiotic therapy on mortality in patients with healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia: a propensity-matched analysis. BMC Infect. Dis., 16(1):331.

[52]Zhao, H.X., Zhao, J.L., Shen, J.Z., et al., 2014. Prevalence and molecular characterization of fluoroquinolone resistance in Escherichia coli isolates from dairy cattle with endometritis in China. Microb. Drug. Resist., 20(2): 162-169.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE