Full Text:   <2374>

Summary:  <1574>

CLC number: R338.64

On-line Access: 2019-03-01

Received: 2018-06-19

Revision Accepted: 2018-10-04

Crosschecked: 2019-01-10

Cited: 0

Clicked: 6249

Citations:  Bibtex RefMan EndNote GB/T7714


Jariya Umka Welbat


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2019 Vol.20 No.3 P.253-263


Valproic acid withdrawal ameliorates impairments of hippocampal-spatial working memory and neurogenesis

Author(s):  Wanassanun Pannangrong, Apiwat Sirichoat, Trai Wongsiri, Peter Wigmore, Jariya Umka Welbat

Affiliation(s):  Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; more

Corresponding email(s):   jariya@kku.ac.th

Key Words:  Hippocampus, Neurogenesis, Spatial memory, Valproic acid

Wanassanun Pannangrong, Apiwat Sirichoat, Trai Wongsiri, Peter Wigmore, Jariya Umka Welbat. Valproic acid withdrawal ameliorates impairments of hippocampal-spatial working memory and neurogenesis[J]. Journal of Zhejiang University Science B, 2019, 20(3): 253-263.

@article{title="Valproic acid withdrawal ameliorates impairments of hippocampal-spatial working memory and neurogenesis",
author="Wanassanun Pannangrong, Apiwat Sirichoat, Trai Wongsiri, Peter Wigmore, Jariya Umka Welbat",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Valproic acid withdrawal ameliorates impairments of hippocampal-spatial working memory and neurogenesis
%A Wanassanun Pannangrong
%A Apiwat Sirichoat
%A Trai Wongsiri
%A Peter Wigmore
%A Jariya Umka Welbat
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 3
%P 253-263
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1800340

T1 - Valproic acid withdrawal ameliorates impairments of hippocampal-spatial working memory and neurogenesis
A1 - Wanassanun Pannangrong
A1 - Apiwat Sirichoat
A1 - Trai Wongsiri
A1 - Peter Wigmore
A1 - Jariya Umka Welbat
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 3
SP - 253
EP - 263
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1800340

valproic acid (VPA), an agent that is used to treat epileptic seizures, can cause spatial memory impairment in adults and children. This effect is thought to be due to the ability of VPA to inhibit neurogenesis in the hippocampus, which is required for learning. We have previously used an animal model to show that VPA significantly impairs hippocampal-spatial working memory and inhibits neuronal generation in the sub-granular zone of the dentate gyrus. As there are patient reports of improvements in memory after discontinuing VPA treatment, the present study investigated the recovery of both spatial memory and hippocampal neurogenesis at two time points after withdrawal of VPA. Male Wistar rats were given intraperitoneal injections of 0.9% normal saline or VPA (300 mg/kg) twice a day for 10 d. At 1, 30, or 45 d after the drug treatment, the novel object location (NOL) test was used to examine spatial memory; hippocampal cell division was counted using Ki67 immunohistochemistry, and levels of brain-derived neurotrophic factor (BDNF) and Notch1 were measured using western immunoblotting. Spatial working memory was impaired 1 and 30 d after the final administration, but was restored to control levels by 45 d. Cell proliferation had increased to control levels at 30 and 45 d. Both markers of neurogenesis (BDNF and Notch1 levels) had returned to control levels at 45 d. These results demonstrate that memory recovery occurs over a period of six weeks after discontinuing VPA treatment and is preceded by a return of hippocampal neurogenesis to control levels.


方法:雄性Wistar大鼠每天两次腹膜内注射0.9%生理盐水或丙戊酸(300 mg/kg),持续10天.在药物治疗结束后第1、30或45天,使用新物体位置(NOL)测试来检查空间记忆;使用Ki67免疫组织化学计数海马细胞分裂情况;并使用免疫印迹法(western immunoblotting)测量脑源性神经营养因子(BDNF)和Notch1的水平.


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abrous DN, Koehl M, le Moal M, 2005. Adult neurogenesis: from precursors to network and physiology. Physiol Rev, 85(2):523-569.

[2]Bekinschtein P, Cammarota M, Katche C, et al., 2008. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci USA, 105(7):2711-2716.

[3]Bewernick BH, Schlaepfer TE, 2013. Chronic depression as a model disease for cerebral aging. Dialogues Clin Neurosci, 15(1):77-85.

[4]Bredy TW, Wu H, Crego C, et al., 2007. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem, 14(4):268-276.

[5]Breunig JJ, Silbereis J, Vaccarino FM, et al., 2007. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci USA, 104(51):20558-20563.

[6]Buckley PF, 2008. Update on the treatment and management of schizophrenia and bipolar disorder. CNS Spectr, 13(2 Suppl 1):1-10; quiz 11-12.

[7]Carpay JA, Aldenkamp AP, van Donselaar CA, 2005. Complaints associated with the use of antiepileptic drugs: results from a community-based study. Seizure, 14(3):198-206.

[8]Carrozzo M, Koch G, Turriziani P, et al., 2005. Integration of cognitive allocentric information in visuospatial short-term memory through the hippocampus. Hippocampus, 15(8):1072-1084.

[9]Chaisawang P, Sirichoat A, Chaijaroonkhanarak W, et al., 2017. Asiatic acid protects against cognitive deficits and reductions in cell proliferation and survival in the rat hippocampus caused by 5-fluorouracil chemotherapy. PLoS ONE, 12(7):e0180650.

[10]Chan JP, Cordeira J, Calderon GA, et al., 2008. Depletion of central BDNF in mice impedes terminal differentiation of new granule neurons in the adult hippocampus. Mol Cell Neurosci, 39(3):372-383.

[11]Costa RM, Drew C, Silva AJ, 2005. Notch to remember. Trends Neurosci, 28(8):429-435.

[12]Cunha C, Brambilla R, Thomas KL, 2010. A simple role for BDNF in learning and memory? Front Mol Neurosci, 3:1.

[13]Cysique LA, Maruff P, Brew BJ, 2006. Valproic acid is associated with cognitive decline in HIV-infected individuals: a clinical observational study. BMC Neurol, 6:42.

[14]Das CM, Aguilera D, Vasquez H, et al., 2007. Valproic acid induces p21 and topoisomerase-II (α/β) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines. J Neurooncol, 85(2):159-170.

[15]Dix SL, Aggleton JP, 1999. Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behav Brain Res, 99(2):191-200.

[16]Ehninger D, Kempermann G, 2008. Neurogenesis in the adult hippocampus. Cell Tissue Res, 331(1):243-250.

[17]Ennaceur A, Delacour J, 1988. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res, 31(1):47-59.

[18]Eriksson PS, Perfilieva E, Björk-Eriksson T, et al., 1998. Neurogenesis in the adult human hippocampus. Nat Med, 4(11):1313-1317.

[19]Gualtieri CT, Johnson LG, 2006. Comparative neurocognitive effects of 5 psychotropic anticonvulsants and lithium. MedGenMed, 8(3):46.

[20]Hao YL, Creson T, Zhang L, et al., 2004. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci, 24(29):6590-6599.

[21]Henry TR, 2003. The history of valproate in clinical neuroscience. Psychopharmacol Bull, 37(Suppl 2):5-16.

[22]Hitoshi S, Alexson T, Tropepe V, et al., 2002. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev, 16(7):846-858.

[23]Hommet C, Mondon K, de Toffol B, et al., 2007. Reversible cognitive and neurological symptoms during valproic acid therapy. J Am Geriatr Soc, 55(4):628.

[24]Hsieh J, Nakashima K, Kuwabara T, et al., 2004. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA, 101(47):16659-16664.

[25]Imayoshi I, Sakamoto M, Ohtsuka T, et al., 2008. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci, 11(10):1153-1161.

[26]Jessberger S, Nakashima K, Clemenson GD, et al., 2007. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci, 27(22):5967-5975.

[27]Kee N, Sivalingam S, Boonstra R, et al., 2002. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods, 115(1):97-105.

[28]Kee N, Teixeira CM, Wang AH, et al., 2007. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci, 10(3):355-362.

[29]Kitabatake Y, Sailor KA, Ming GL, et al., 2007. Adult neurogenesis and hippocampal memory function: new cells, more plasticity, new memories? Neurosurg Clin North Am, 18(1):105-113.

[30]Kostrouchová M, Kostrouch Z, Kostrouchová M, 2007. Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol (Praha), 53(2):37-49.

[31]Kwan P, Sills GJ, Brodie MJ, 2001. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol Ther, 90(1):21-34.

[32]Lehrman G, Hogue IB, Palmer S, et al., 2005. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet, 366(9485):549-555.

[33]Li XN, Shu Q, Su JMF, et al., 2005. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther, 4(12):1912-1922.

[34]Lossius MI, Hessen E, Mowinckel P, et al., 2008. Consequences of antiepileptic drug withdrawal: a randomized, double-blind study (Akershus study). Epilepsia, 49(3):455-463.

[35]Louissaint A Jr, Rao S, Leventhal C, et al., 2002. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron, 34(6):945-960.

[36]Masmoudi K, Gras-Champel V, Masson H, et al., 2006. Parkinsonism and/or cognitive impairment with valproic acid therapy: a report of ten cases. Pharmacopsychiatry, 39(1):9-12.

[37]Mayhew TM, Burton GJ, 1988. Methodological problems in placental morphometry: apologia for the use of stereology based on sound sampling practice. Placenta, 9(6):565-581.

[38]Meador MJ, 2007. The basic science of memory as it applies to epilepsy. Epilepsia, 48(Suppl 9):23-25.

[39]Mumby DG, Gaskin S, Glenn MJ, et al., 2002. Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem, 9(2):49-57.

[40]Mustafa S, Walker A, Bennett G, et al., 2008. 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci, 28(2):323-330.

[41]Nissinen J, Pitkänen A, 2007. Effect of antiepileptic drugs on spontaneous seizures in epileptic rats. Epilepsy Res, 73(2):181-191.

[42]Quesseveur G, David DJ, Gaillard MC, et al., 2013. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry, 3(4):e253.

[43]Reed JM, Squire LR, 1997. Impaired recognition memory in patients with lesions limited to the hippocampal formation. Behav Neurosci, 111(4):667-675.

[44]Seigers R, Schagen SB, Beerling W, et al., 2008. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res, 186(2):168-175.

[45]Senturk V, Goker C, Bilgic A, et al., 2007. Impaired verbal memory and otherwise spared cognition in remitted bipolar patients on monotherapy with lithium or valproate. Bipolar Disord, 9(Suppl 1):136-144.

[46]Sgobio C, Ghiglieri V, Costa C, et al., 2010. Hippocampal synaptic plasticity, memory, and epilepsy: effects of long-term valproic acid treatment. Biol Psychiatry, 67(6):567-574.

[47]Sirichoat A, Chaijaroonkhanarak W, Prachaney P, et al., 2015. Effects of asiatic acid on spatial working memory and cell proliferation in the adult rat hippocampus. Nutrients, 7(10):8413-8423.

[48]Umka J, Mustafa S, ElBeltagy M, et al., 2010. Valproic acid reduces spatial working memory and cell proliferation in the hippocampus. Neuroscience, 166(1):15-22.

[49]Wang HD, Dunnavant FD, Jarman T, et al., 2004. Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology, 29(7):1230-1238.

[50]Welbat JU, Sirichoat A, Chaijaroonkhanarak W, et al., 2016a. Asiatic acid prevents the deleterious effects of valproic acid on cognition and hippocampal cell proliferation and survival. Nutrients, 8(5):303.

[51]Welbat JU, Sangrich P, Sirichoat A, et al., 2016b. Fluoxetine prevents the memory deficits and reduction in hippocampal cell proliferation caused by valproic acid. J Chem Neuroanat, 78:112-118.

[52]Welbat JU, Chaisawang P, Chaijaroonkhanarak W, et al., 2016c. Kaempferia parviflora extract ameliorates the cognitive impairments and the reduction in cell proliferation induced by valproic acid treatment in rats. Ann Anat, 206:7-13.

[53]Wu HM, Zhang QZ, Gao JQ, et al., 2018. Modulation of sphingosine 1-phosphate (S1P) attenuates spatial learning and memory impairments in the valproic acid rat model of autism. Psychopharmacology (Berl), 235(3):873-886.

[54]Zhao CM, Teng EM, Summers RG Jr, et al., 2006. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1):3-11.

[55]Zhao R, Daley GQ, 2008. From fibroblasts to iPS cells: induced pluripotency by defined factors. J Cell Biochem, 105(4):949-955.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE