Full Text:   <2524>

Summary:  <1887>

CLC number: S41-30

On-line Access: 2019-04-01

Received: 2018-11-06

Revision Accepted: 2019-01-29

Crosschecked: 2019-03-02

Cited: 0

Clicked: 4166

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2019 Vol.20 No.4 P.343-354

http://doi.org/10.1631/jzus.B1800563


Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus


Author(s):  De-Qing Huang, Rui Chen, Ya-Qin Wang, Jian Hong, Xue-Ping Zhou, Jian-Xiang Wu

Affiliation(s):  State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   zzhou@zju.edu.cn, wujx@zju.edu.cn

Key Words:  Monoclonal antibody, Colloidal gold-based immunochromatographic strip, Rice stripe virus, Rice, Small brown planthopper


De-Qing Huang, Rui Chen, Ya-Qin Wang, Jian Hong, Xue-Ping Zhou, Jian-Xiang Wu. Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus[J]. Journal of Zhejiang University Science B, 2019, 20(4): 343-354.

@article{title="Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus",
author="De-Qing Huang, Rui Chen, Ya-Qin Wang, Jian Hong, Xue-Ping Zhou, Jian-Xiang Wu",
journal="Journal of Zhejiang University Science B",
volume="20",
number="4",
pages="343-354",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1800563"
}

%0 Journal Article
%T Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus
%A De-Qing Huang
%A Rui Chen
%A Ya-Qin Wang
%A Jian Hong
%A Xue-Ping Zhou
%A Jian-Xiang Wu
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 4
%P 343-354
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1800563

TY - JOUR
T1 - Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus
A1 - De-Qing Huang
A1 - Rui Chen
A1 - Ya-Qin Wang
A1 - Jian Hong
A1 - Xue-Ping Zhou
A1 - Jian-Xiang Wu
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 4
SP - 343
EP - 354
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1800563


Abstract: 
rice stripe virus%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>rice stripe virus (RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies (MAbs) 16E6 and 11C1 against RSV and a colloidal gold-based immunochromatographic strip were developed for specific, sensitive, and rapid detection of RSV in rice plant and planthopper samples. The MAb 16E6 was conjugated with colloidal gold and the MAb 11C1 was coated on the test line of the nitrocellulose membrane of the test strip. The specificity of the test strip was confirmed by a positive reaction to RSV-infected rice plants and small brown planthopper (SBPH), and negative reactions to five other rice viruses, healthy rice plants, four other vectors of five rice viruses, and non-viruliferous SBPH. Sensitivity analyses showed that the test strip could detect the virus in RSV-infected rice plant tissue crude extracts diluted to 1:20 480 (w/v, g/mL), and in individual viruliferous SBPH homogenate diluted to 1:2560 (individual SPBH/μL). The validity of the developed strip was further confirmed by tests using field-collected rice and SBPH samples. This newly developed test strip is a low-cost, fast, and easy-to-use tool for on-site detection of RSV infection during field epidemiological studies and paddy field surveys, and thus can benefit decision-making for RSV management in the field.

一种快速检测水稻条纹病毒的胶体金免疫层析试纸条的研制

目的:制备一种检测水稻植物和传毒介体灰飞虱中水稻条纹病毒(RSV)的胶体金免疫层析试纸条,为水稻条纹叶枯病的田间调查和检测以及预测预警提供快速、实用的检测试剂.
创新点:利用制备的RSV单克隆抗体,首次制备了能在5~10 min内快速、准确、灵敏、特异地检测水稻植物和灰飞虱体内RSV的胶体金免疫层析试纸条.
方法:以差速离心方法提纯的RSV病毒粒子作为免疫原免疫BALB/c小鼠,通过杂交瘤技术获得了高度特异和灵敏的RSV单克隆抗体.采用柠檬酸钠还原氯金酸的方法制备胶体金并标记一个RSV单克隆抗体,另一个RSV单克隆抗体和羊抗鼠抗体分别包被到硝酸纤维素膜的检测线和质控线,将吸水滤纸制成的样品垫、RSV免疫胶体金垫、结合有RSV单抗和羊抗鼠抗体的硝酸纤维素膜和吸水纸依次粘贴到聚氯乙烯(PVC)胶板上研制检测水稻植物和传毒介体灰飞虱中RSV的胶体金免疫层析试纸条.对田间样品进行RSV检测,分析试纸条检测RSV的有效性.
结论:利用杂交瘤技术获得了2株RSV单克隆抗体(16E6和11C1),胶体金标记16E6单克隆抗体包被在聚酯膜制成的结合垫上,以11C1单克隆抗体和羊抗鼠抗体分别包被到硝酸纤维素膜的检测线和质控线,制成能在5~10 min内快速、特异、灵敏、准确地检测田间水稻及单头灰飞虱样品中RSV的胶体金免疫层析试纸条.试纸条检测感染RSV的水稻植株和灰飞虱呈阳性反应,而检测健康水稻和感染其它5种常见水稻病毒的植株及其传毒介体呈阴性反应,且试纸条检测RSV感染水稻植物组织的灵敏度达到1:20 480倍稀释(w/v, g/mL),检测携带RSV单头灰飞虱的灵敏度达到1:2560倍稀释(单头灰飞虱/µL).田间样品检测结果发现,试纸条检测结果与反转录聚合酶链反应(RT-PCR)的检测结果一致,表明制备的试纸条可有效地用于田间RSV的检测,从而为水稻条纹叶枯病的诊断、监测预警、抗病育种、流行病学研究及科学防治提供技术和物质支撑.

关键词:单克隆抗体;胶体金免疫层析试纸条;水稻条纹病毒;水稻;灰飞虱

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Barbier P, Takahashi M, Nakamura I, et al., 1992. Solubilization and promoter analysis of RNA polymerase from rice stripe virus. J Virol, 66(10):6171-6174.

[2]Chen Z, Zhang MH, Zhou XP, et al., 2017. Development and detection application of monoclonal antibodies against Zucchini yellow mosaic virus. J Integr Agric, 16(1):115-124.

[3]Deng XF, Liu LQ, Ma WW, et al., 2012. Development and validation of a sandwich ELISA for quantification of peanut agglutinin (PNA) in foods. Food Agric Immunol, 23(3):265-272.

[4]Falk BW, Tsai JH, 1997. Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol, 36:139-163.

[5]Frens G, 1973. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci, 241(105):20-22.

[6]Hayano Y, Kakutani T, Hayashi T, et al., 1990. Coding strategy of rice stripe virus: major nonstructural protein is encoded in viral RNA segment 4 and coat protein in RNA complementary to segment 3. Virology, 177(1):372-374.

[7]Hibino H, 1996. Biology and epidemiology of rice viruses. Annu Rev Phytopathol, 34:249-274.

[8]Huang LZ, Rao LX, Zhou XP, et al., 2013. Genetic variability and evolution of rice stripe virus. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(10):875-885.

[9]Huo Y, Liu WW, Zhang FJ, et al., 2014. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLoS Path, 10(3):e1003949.

[10]Kakutani T, Hayano Y, Hayashi T, et al., 1991. Ambisense segment 3 of rice stripe virus: the first instance of a virus containing two ambisense segments. J Gen Virol, 72(2):465-468.

[11]Ko SJ, Kang BR, Kim DI, et al., 2011. Analysis of the occurrence of Rice stripe virus in Jeonnam province. Res Plant Dis, 17(3):351-357.

[12]Kong LF, Wu JX, Lu LN, et al., 2014. Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant, 7(4):691-708.

[13]Kuang H, Xing CR, Hao CL, et al., 2013. Rapid and highly sensitive detection of lead ions in drinking water based on a strip immunosensor. Sensors, 13(4):4214-4224.

[14]Le DT, Netsu O, Uehara-Ichiki T, et al., 2010. Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. J Virol Methods, 170(1-2):90-93.

[15]Li S, Wang X, Xu JX, et al., 2015. A simplified method for simultaneous detection of Rice stripe virus and Rice black-streaked dwarf virus in insect vector. J Virol Methods, 211:32-35.

[16]Lian S, Cho WK, Jo Y, et al., 2014. Interaction study of rice stripe virus proteins reveals a region of the nucleocapsid protein (NP) required for NP self-interaction and nuclear localization. Virus Res, 183:6-14.

[17]Liu Z, Chen Z, Hong J, et al., 2016. Monoclonal antibody-based serological methods for detecting Citrus tristeza virus in citrus groves. Virol Sin, 31(4):324-330.

[18]Maejima K, Himeno M, Netsu O, et al., 2014. Development of an on-site plum pox virus detection kit based on immunochromatography. J Gen Plant Pathol, 80(2):176-183.

[19]Otuka A, Matsumura M, Sanada-Morimura S, et al., 2010. The 2008 overseas mass migration of the small brown planthopper, Laodelphax striatellus, and subsequent outbreak of rice stripe disease in western Japan. Appl Entomol Zool, 45(2):259-266.

[20]Perosa F, Carbone R, Ferrone S, et al., 1990. Purification of human immunoglobulins by sequential precipitation with caprylic acid and ammonium sulphate. J Immunol Methods, 128(1):9-16.

[21]Song G, Wu JY, Xie Y, et al., 2017. Monoclonal antibody-based serological assays for detection of Potato virus S in potato plants. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(12):1075-1082.

[22]Suzuki Y, Fuji S, Takahashi Y, et al., 1992. Immunogold localization of Rice stripe virus particle antigen in thin sections of insect host cells. Ann Phytopathol Soc Jpn, 58:480.

[23]Takahashi Y, Omura T, Shohara K, et al., 1991. Comparison of four serological methods for practical detection of ten viruses of rice in plants and insects. Plant Dis, 75(5):458-461.

[24]Toriyama S, 1986. Rice stripe virus: prototype of a new group of viruses that replicate in plants and insects. Microbiol Sci, 3(11):347-351.

[25]Wang GZ, Zhou YJ, Chen ZX, et al., 2004. Production of monoclonal antibodies to Rice stripe virus and application in virus detection. Acta Phytopathol Sin, 34(4):302-306 (in Chinese).

[26]https://doi.org/10.13926/j.cnki.apps.2004.04.003

[27]Wang HD, Chen JP, Zhang HM, et al., 2008. Recent Rice stripe virus epidemics in Zhejiang province, China, and experiments on sowing date, disease-yield loss relationships, and seedling susceptibility. Plant Dis, 92(8):1190-1196.

[28]Wang YH, Xue YB, Li JY, 2005. Towards molecular breeding and improvement of rice in China. Trends Plant Sci, 10(12):610-614.

[29]Wu GT, Lu YW, Zheng HY, et al., 2013. Transcription of ORFs on RNA2 and RNA4 of Rice stripe virus terminate at an AUCCGGAU sequence that is conserved in the genus Tenuivirus. Virus Res, 175(1):71-77.

[30]Wu JX, Zhang SE, Zhou XP, 2010. Monoclonal antibody-based ELISA and colloidal gold-based immunochromatographic assay for streptomycin residue detection in milk and swine urine. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 11(1):52-60.

[31]Wu SJ, Zhong H, Zhou Y, et al., 2009. Identification of QTLs for the resistance to rice stripe virus in the indica rice variety Dular. Euphytica, 165(3):557-565.

[32]Wu W, Zheng LM, Chen HY, et al., 2014. Nonstructural protein NS4 of Rice stripe virus plays a critical role in viral spread in the body of vector insects. PLoS ONE, 9(2):e88636.

[33]Xiong RY, Wu JX, Zhou YJ, et al., 2008. Identification of a movement protein of the Tenuivirus rice stripe virus. J Virol, 82(24):12304-12311.

[34]Xiong RY, Wu JX, Zhou YJ, et al., 2009. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology, 387(1):29-40.

[35]Xu QF, Liu HQ, Yuan PP, et al., 2017. Development of a simplified RT-PCR without RNA isolation for rapid detection of RNA viruses in a single small brown planthopper (Laodelphax striatellus Fallén). Virol J, 14:90.

[36]Xu Y, Zhou XP, 2012. Role of rice stripe virus NSvc4 in cell-to-cell movement and symptom development in Nicotiana benthamiana. Front Plant Sci, 3:269.

[37]Zhang GP, Wang XN, Yang JF, et al., 2006. Development of an immunochromatographic lateral flow test strip for detection of β-adrenergic agonist clenbuterol residues. J Immunol Methods, 312(1-2):27-33.

[38]Zhang MH, Chen R, Zhou XP, et al., 2018. Monoclonal antibody-based serological detection methods for wheat dwarf virus. Virol Sin, 33(2):173-180.

[39]Zhang X, Wang XF, Zhou GH, 2008. A one-step real time RT-PCR assay for quantifying rice stripe virus in rice and in the small brown planthopper (Laodelphax striatellus Fallen). J Virol Methods, 151(2):181-187.

[40]Zhu YF, Hayakawa T, Toriyam S, et al., 1991. Complete nucleotide sequence of RNA 3 of rice stripe virus: an ambisense coding strategy. J Gen Virol, 72:763-767.

[41]Zhu YF, Hayakawa T, Toriyama J, 1992. Complete nucleotide sequence of RNA 4 of rice stripe virus isolate T, and comparison with another isolate and with maize stripe virus. J Gen Virol, 73:1309-1312.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE