CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-26
Cited: 0
Clicked: 1371
Xinjia CAI, Jianyun ZHANG, Heyu ZHANG, Tiejun LI. Biomarkers of malignant transformation in oral leukoplakia: from bench to bedside[J]. Journal of Zhejiang University Science B, 2023, 24(10): 868-882.
@article{title="Biomarkers of malignant transformation in oral leukoplakia: from bench to bedside",
author="Xinjia CAI, Jianyun ZHANG, Heyu ZHANG, Tiejun LI",
journal="Journal of Zhejiang University Science B",
volume="24",
number="10",
pages="868-882",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2200589"
}
%0 Journal Article
%T Biomarkers of malignant transformation in oral leukoplakia: from bench to bedside
%A Xinjia CAI
%A Jianyun ZHANG
%A Heyu ZHANG
%A Tiejun LI
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 10
%P 868-882
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200589
TY - JOUR
T1 - Biomarkers of malignant transformation in oral leukoplakia: from bench to bedside
A1 - Xinjia CAI
A1 - Jianyun ZHANG
A1 - Heyu ZHANG
A1 - Tiejun LI
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 10
SP - 868
EP - 882
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200589
Abstract: oral leukoplakia is a common precursor lesion of oral squamous cell carcinoma, which indicates a high potential of malignancy. The malignant transformation of oral leukoplakia seriously affects patient survival and quality of life; however, it is difficult to identify oral leukoplakia patients who will develop carcinoma because no biomarker exists to predict malignant transformation for effective clinical management. As a major problem in the field of head and neck pathologies, it is imperative to identify biomarkers of malignant transformation in oral leukoplakia. In this review, we discuss the potential biomarkers of malignant transformation reported in the literature and explore the translational probabilities from bench to bedside. Although no single biomarker has yet been applied in the clinical setting, profiling for genomic instability might be a promising adjunct.
[1]AbeM, YamashitaS, MoriY, et al., 2016. High-risk oral leukoplakia is associated with aberrant promoter methylation of multiple genes. BMC Cancer, 16:350.
[2]Aguirre-UrizarJM, Lafuente‐Ibáñez de MendozaI, WarnakulasuriyaS, 2021. Malignant transformation of oral leukoplakia: systematic review and meta-analysis of the last 5 years. Oral Dis, 27(8):1881-1895.
[3]BabiuchK, Kuśnierz-CabalaB, KęsekB, et al., 2020. Evaluation of proinflammatory, NF-kappaB dependent cytokines: IL-1α, IL-6, IL-8, and TNF-α in tissue specimens and saliva of patients with oral squamous cell carcinoma and oral potentially malignant disorders. J Clin Med, 9(3):867.
[4]BaranCA, AgaimyA, WehrhanF, et al., 2019. MAGE-A expression in oral and laryngeal leukoplakia predicts malignant transformation. Mod Pathol, 32(8):1068-1081.
[5]BhosalePG, CristeaS, AmbatipudiS, et al., 2017. Chromosomal alterations and gene expression changes associated with the progression of leukoplakia to advanced gingivobuccal cancer. Transl Oncol, 10(3):396-409.
[6]BouaoudJ, FoyJP, TortereauA, et al., 2021. Early changes in the immune microenvironment of oral potentially malignant disorders reveal an unexpected association of M2 macrophages with oral cancer free survival. OncoImmunology, 10(1):1944554.
[7]BrailoV, Vučićević-BorasV, Cekić-ArambašinA, et al., 2006. The significance of salivary interleukin 6 and tumor necrosis factor alpha in patients with oral leukoplakia. Oral Oncol, 42(4):370-373.
[8]CaiXJ, YaoZG, LiuG, et al., 2019. Oral submucous fibrosis: a clinicopathological study of 674 cases in China. J Oral Pathol Med, 48(4):321-325.
[9]CaiXJ, ZhangJY, HanY, et al., 2021. Development and validation of a nomogram prediction model for malignant transformation of oral potentially malignant disorders. Oral Oncology, 123:105619.
[10]CaiXJ, ZhangJY, ZhangAB, et al., 2022a. Emerging role of high glucose levels in cancer progression and therapy. Chin J Dent Res, 25(1):11-20.
[11]CaiXJ, ZhangJY, ZhangHY, et al., 2022b. Overestimated risk of transformation in oral lichen planus. Oral Oncology, 133:106025.
[12]CalenicB, GreabuM, CaruntuC, et al., 2015. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses. Periodontology 2000, 69(1):68-82.
[13]CaoW, YounisRH, LiJ, et al., 2011. EZH2 promotes malignant phenotypes and is a predictor of oral cancer development in patients with oral leukoplakia. Cancer Prev Res (Phila), 4(11):1816-1824.
[14]CelentanoA, GlurichI, BorgnakkeWS, et al., 2021. World Workshop on Oral Medicine VII: prognostic biomarkers in oral leukoplakia and proliferative verrucous leukoplakia—a systematic review of retrospective studies. Oral Dis, 27(4):848-880.
[15]CervigneNK, ReisPP, MachadoJ, et al., 2009. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet, 18(24):4818-4829.
[16]ChangYA, WengSL, YangSF, et al., 2018. A three-microRNA signature as a potential biomarker for the early detection of oral cancer. Int J Mol Sci, 19(3):758.
[17]ChaturvediAK, UdaltsovaN, EngelsEA, et al., 2020. Oral leukoplakia and risk of progression to oral cancer: a population-based cohort study. J Natl Cancer Inst, 112(10):1047-1054.
[18]ChavesALF, SilvaAG, MaiaFM, et al., 2019. Reduced CD8+ T cells infiltration can be associated to a malignant transformation in potentially malignant oral epithelial lesions. Clin Oral Invest, 23(4):1913-1919.
[19]ChavesFN, BezerraTMM, MoraesDC, et al., 2020. Loss of heterozygosity and immunoexpression of PTEN in oral epithelial dysplasia and squamous cell carcinoma. Exp Mol Pathol, 112:104341.
[20]ChenYK, HuangAHC, ChengPH, et al., 2013. Overexpression of Smad proteins, especially Smad7, in oral epithelial dysplasias. Clin Oral Invest, 17(3):921-932.
[21]CruzI, NapierSS, van der WaalI, et al., 2002. Suprabasal p53 immunoexpression is strongly associated with high grade dysplasia and risk for malignant transformation in potentially malignant oral lesions from Northern Ireland. J Clin Pathol, 55(2):98-104.
[22]de Carvalho FragaCA, FariasLC, de OliveiraMVM, et al., 2014. Increased VEGFR2 and MMP9 protein levels are associated with epithelial dysplasia grading. Pathol Res Pract, 210(12):959-964.
[23]de Freitas SilvaBS, Yamamoto-SilvaFP, PontesHAR, et al., 2014. E-cadherin downregulation and Twist overexpression since early stages of oral carcinogenesis. J Oral Pathol Med, 43(2):125-131.
[24]de VicenteJC, RodrigoJP, Rodriguez-SantamartaT, et al., 2013. Podoplanin expression in oral leukoplakia: tumorigenic role. Oral Oncol, 49(6):598-603.
[25]de VicenteJC, Donate-Pérez del MolinoP, RodrigoJP, et al., 2019. SOX2 expression is an independent predictor of oral cancer progression. J Clin Med, 8(10):1744.
[26]DrewsRM, HernandoB, TarabichiM, et al., 2022. A pan-cancer compendium of chromosomal instability. Nature, 606(7916):976-983.
[27]EmilionG, LangdonJ, SpeightP, et al., 1996. Frequent gene deletions in potentially malignant oral lesions. Br J Cancer, 73(6):809-813.
[28]Fernández-ValleÁ, RodrigoJP, García-PedreroJM, et al., 2016. Expression of the voltage-gated potassium channel Kv3.4 in oral leucoplakias and oral squamous cell carcinomas. Histopathology, 69(1):91-98.
[29]Ferrer-SánchezA, BaganJ, Vila-FrancésJ, et al., 2022. Prediction of the risk of cancer and the grade of dysplasia in leukoplakia lesions using deep learning. Oral Oncol, 132:105967.
[30]Fonseca-SilvaT, DinizMG, de SousaSF, et al., 2016. Association between histopathological features of dysplasia in oral leukoplakia and loss of heterozygosity. Histopathology, 68(3):456-460.
[31]GhoshA, DasC, GhoseS, et al., 2022. Integrative analysis of genomic and transcriptomic data of normal, tumour, and co-occurring leukoplakia tissue triads drawn from patients with gingivobuccal oral cancer identifies signatures of tumour initiation and progression. J Pathol, 257(5):593-606.
[32]GiresO, MackB, RauchJ, et al., 2006. CK8 correlates with malignancy in leukoplakia and carcinomas of the head and neck. Biochem Biophys Res Commun, 343(1):252-259.
[33]GomesCC, Fonseca-SilvaT, GalvãoCF, et al., 2015. Inter- and intra-lesional molecular heterogeneity of oral leukoplakia. Oral Oncol, 51(2):178-181.
[34]GravelandAP, BremmerJF, de MaakerM, et al., 2013. Molecular screening of oral precancer. Oral Oncol, 49(12):1129-1135.
[35]GrochauKJ, SafiAF, DrebberU, et al., 2019. Podoplanin expression in oral leukoplakia—a prospective study. J Craniomaxillofac Surg, 47(3):505-509.
[36]JäwertF, FehrA, ÖhmanJ, et al., 2022. Recurrent copy number alterations involving EGFR, CDKN2A, and CCND1 in oral premalignant lesions. J Oral Pathol Med, 51(6):546-552.
[37]JiangWW, FujiiH, ShiraiT, et al., 2001. Accumulative increase of loss of heterozygosity from leukoplakia to foci of early cancerization in leukoplakia of the oral cavity. Cancer, 92(9):2349-2356. https://doi.org/10.1002/1097-0142(20011101)92:9<2349::aid-cncr1582>3.0.co;2-i
[38]KaurJ, MattaA, KakI, et al., 2014. S100A7 overexpression is a predictive marker for high risk of malignant transformation in oral dysplasia. Int J Cancer, 134(6):1379-1388.
[39]KawaguchiH, El-NaggarAK, PapadimitrakopoulouV, et al., 2008. Podoplanin: a novel marker for oral cancer risk in patients with oral premalignancy. J Clin Oncol, 26(3):354-360.
[40]KleinIP, MeurerL, DanileviczCK, et al., 2020. BMI-1 expression increases in oral leukoplakias and correlates with cell proliferation. J Appl Oral Sci, 28:e20190532.
[41]KovesiG, SzendeB, 2006. Prognostic value of cyclin D1, p27, and p63 in oral leukoplakia. J Oral Pathol Med, 35(5):274-277.
[42]KreppelM, KreppelB, DrebberU, et al., 2012. Podoplanin expression in oral leukoplakia: prognostic value and clinicopathological implications. Oral Dis, 18(7):692-699.
[43]KujanO, AgagM, SmagaM, et al., 2022. PD-1/PD-L1, Treg-related proteins, and tumour-infiltrating lymphocytes are associated with the development of oral squamous cell carcinoma. Pathology, 54(4):409-416.
[44]KurokawaH, MatsumotoS, MurataT, et al., 2003. Immunohistochemical study of syndecan-1 down-regulation and the expression of p53 protein or Ki-67 antigen in oral leukoplakia with or without epithelial dysplasia. J Oral Pathol Med, 32(9):513-521.
[45]KyrodimouM, AndreadisD, DrougouA, et al., 2014. Desmoglein-3/γ-catenin and E-cadherin/ß-catenin differential expression in oral leukoplakia and squamous cell carcinoma. Clin Oral Invest, 18(1):199-210.
[46]LameiraAG, PontesFSC, GuimarãesDM, et al., 2014. MCM3 could be a better marker than Ki-67 for evaluation of dysplastic oral lesions: an immunohistochemical study. J Oral Pathol Med, 43(6):427-434.
[47]LiXT, LiuL, ZhangJY, et al., 2021. Improvement in the risk assessment of oral leukoplakia through morphology-related copy number analysis. Sci China Life Sci, 64(9):1379-1391.
[48]LinCY, ChenWH, LiaoCT, et al., 2010. Positive association of glucose-regulated protein 78 during oral cancer progression and the prognostic value in oral precancerous lesions. Head Neck, 32(8):1028-1039.
[49]LinL, WangJY, LiuDJ, et al., 2016. Interleukin-37 expression and its potential role in oral leukoplakia and oral squamous cell carcinoma. Sci Rep, 6:26757.
[50]LiuW, FengJQ, ShenXM, et al., 2012. Two stem cell markers, ATP-binding cassette, G2 subfamily (ABCG2) and BMI-1, predict the transformation of oral leukoplakia to cancer: a long-term follow-up study. Cancer, 118(6):1693-1700.
[51]LiuW, WuL, ShenXM, et al., 2013. Expression patterns of cancer stem cell markers ALDH1 and CD133 correlate with a high risk of malignant transformation of oral leukoplakia. Int J Cancer, 132(4):868-874.
[52]MaimaitiA, AbudoukeremuK, TieL, et al., 2015. MicroRNA expression profiling and functional annotation analysis of their targets associated with the malignant transformation of oral leukoplakia. Gene, 558(2):271-277.
[53]MaoL, LeeJS, FanYH, et al., 1996. Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nat Med, 2(6):682-685.
[54]MelloFW, MiguelAFP, DutraKL, et al., 2018. Prevalence of oral potentially malignant disorders: a systematic review and meta-analysis. J Oral Pathol Med, 47(7):633-640.
[55]MelloFW, MeloG, GuerraENS, et al., 2020. Oral potentially malignant disorders: a scoping review of prognostic biomarkers. Crit Rev Oncol Hematol, 153:102986.
[56]LANMiyahara, PontesFSC, BurbanoRMR, et al., 2018. PTEN allelic loss is an important mechanism in the late stage of development of oral leucoplakia into oral squamous cell carcinoma. Histopathology, 72(2):330-338.
[57]MonteiroL, MelloFW, WarnakulasuriyaS, 2021. Tissue biomarkers for predicting the risk of oral cancer in patients diagnosed with oral leukoplakia: a systematic review. Oral Dis, 27(8):1977-1992.
[58]MonteiroL, do AmaralB, DelgadoL, et al., 2022. Podoplanin expression independently and jointly with oral epithelial dysplasia grade acts as a potential biomarker of malignant transformation in oral leukoplakia. Biomolecules, 12(5):606.
[59]MullerS, TilakaratneWM, 2022. Update from the 5th edition of the World Health Organization Classification of Head and Neck Tumors: tumours of the oral cavity and mobile tongue. Head Neck Pathol, 16(1):54-62.
[60]NguyenCTK, OkamuraT, MoritaKI, et al., 2017. LAMC2 is a predictive marker for the malignant progression of leukoplakia. J Oral Pathol Med, 46(3):223-231.
[61]OdellE, KujanO, WarnakulasuriyaS, et al., 2021. Oral epithelial dysplasia: recognition, grading and clinical significance. Oral Dis, 27(8):1947-1976.
[62]PalJ, RajputY, ShrivastavaS, et al., 2022. A standalone approach to utilize telomere length measurement as a surveillance tool in oral leukoplakia. Mol Oncol, 16(8):1650-1660.
[63]PapaleF, SantonocitoS, PolizziA, et al., 2022. The new era of salivaomics in dentistry: frontiers and facts in the early diagnosis and prevention of oral diseases and cancer. Metabolites, 12(7):638.
[64]PartridgeM, EmilionG, PateromichelakisS, et al., 1998. Allelic imbalance at chromosomal loci implicated in the pathogenesis of oral precancer, cumulative loss and its relationship with progression to cancer. Oral Oncol, 34(2):77-83.
[65]PengJK, DanHX, XuH, et al., 2022. Agreement evaluation of the severity of oral epithelial dysplasia in oral leukoplakia. Chin J Stomatol, 57(9):921-926 (in Chinese).
[66]PengX, ChengL, YouY, et al., 2022. Oral microbiota in human systematic diseases. Int J Oral Sci, 14:14.
[67]PhiliponeE, YoonAJ, WangS, et al., 2016. MicroRNAs-208b-3p, 204-5p, 129-2-3p and 3065-5p as predictive markers of oral leukoplakia that progress to cancer. Am J Cancer Res, 6(7):1537-1546.
[68]PietrobonG, TagliabueM, StringaLM, et al., 2021. Leukoplakia in the oral cavity and oral microbiota: a comprehensive review. Cancers (Basel), 13(17):4439.
[69]PoomsawatS, BuajeebW, KhovidhunkitSO, et al., 2010. Alteration in the expression of cdk4 and cdk6 proteins in oral cancer and premalignant lesions. J Oral Pathol Med, 39(10):793-799.
[70]PritzkerKPH, DarlingMR, HwangJTK, et al., 2021. Oral potentially malignant disorders (OPMD): what is the clinical utility of dysplasia grade? Expert Rev Mol Diagn, 21(3):289-298.
[71]Ramos-GarcíaP, González-MolesMÁ, AyenA, et al., 2019. Predictive value of CCND1/cyclin D1 alterations in the malignant transformation of potentially malignant head and neck disorders: systematic review and meta-analysis. Head Neck, 41(9):3395-3407.
[72]Ramos-GarcíaP, González-MolesMÁ, WarnakulasuriyaS, 2022. Significance of p53 overexpression in the prediction of the malignant transformation risk of oral potentially malignant disorders: a systematic review and meta-analysis. Oral Oncol, 126:105734.
[73]RayJG, ChatterjeeR, ChaudhuriK, 2019. Oral submucous fibrosis: a global challenge. Rising incidence, risk factors, management, and research priorities. Periodontology 2000, 80(1):200-212.
[74]RiesJ, AgaimyA, VairaktarisE, et al., 2012. Evaluation of MAGE-A expression and grade of dysplasia for predicting malignant progression of oral leukoplakia. Int J Oncol, 41(3):1085-1093.
[75]SaintignyP, El-NaggarAK, PapadimitrakopoulouV, et al., 2009. ΔNp63 overexpression, alone and in combination with other biomarkers, predicts the development of oral cancer in patients with leukoplakia. Clin Cancer Res, 15(19):6284-6291.
[76]SakataJ, YoshidaR, MatsuokaY, et al., 2017. Predictive value of the combination of SMAD4 expression and lymphocyte infiltration in malignant transformation of oral leukoplakia. Cancer Med, 6(4):730-738.
[77]SathasivamHP, NayarD, SloanP, et al., 2021. Dysplasia and DNA ploidy to prognosticate clinical outcome in oral potentially malignant disorders. J Oral Pathol Med, 50(2):200-209.
[78]Schaaij-VisserTBM, BremmerJF, BraakhuisBJM, et al., 2010. Evaluation of cornulin, keratin 4, keratin 13 expression and grade of dysplasia for predicting malignant progression of oral leukoplakia. Oral Oncol, 46(2):123-127.
[79]SchwarzS, BierJ, DriemelO, et al., 2008. Losses of 3p14 and 9p21 as shown by fluorescence in situ hybridization are early events in tumorigenesis of oral squamous cell carcinoma and already occur in simple keratosis. Cytometry A, 73(4):305-311.
[80]ShaoS, TsoiLC, SarkarMK, et al., 2019. IFN-γ enhances cell-mediated cytotoxicity against keratinocytes via JAK2/STAT1 in lichen planus. Sci Transl Med, 11(511):eaav7561.
[81]SimpleM, SureshA, DasD, et al., 2015. Cancer stem cells and field cancerization of oral squamous cell carcinoma. Oral Oncol, 51(7):643-651.
[82]ThiemDGE, SchneiderS, VenkatramanNT, et al., 2017. Semiquantifiable angiogenesis parameters in association with the malignant transformation of oral leukoplakia. J Oral Pathol Med, 46(9):710-716.
[83]TobiasMAS, NogueiraBP, SantanaMCS, et al., 2022. Artificial intelligence for oral cancer diagnosis: what are the possibilities? Oral Oncol, 134:106117.
[84]TuHF, LinLH, ChangKW, et al., 2022. Exploiting salivary miR-375 as a clinical biomarker of oral potentially malignant disorder. J Dent Sci, 17(2):659-665.
[85]van den BosscheV, ZaryouhH, Vara-MesslerM, et al., 2022. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat, 60:100806.
[86]VeredM, AllonI, DayanD, 2009. Maspin, p53, p63, and Ki-67 in epithelial lesions of the tongue: from hyperplasia through dysplasia to carcinoma. J Oral Pathol Med, 38(3):314-320.
[87]VillaA, CelentanoA, GlurichI, et al., 2019. World Workshop on Oral Medicine VII: prognostic biomarkers in oral leukoplakia: a systematic review of longitudinal studies. Oral Dis, 25(S1):64-78.
[88]von ZeidlerSV, de Souza BotelhoT, MendonçaEF, et al., 2014. E-cadherin as a potential biomarker of malignant transformation in oral leukoplakia: a retrospective cohort study. BMC Cancer, 14:972.
[89]WarnakulasuriyaS, 2000. Lack of molecular markers to predict malignant potential of oral precancer. J Pathol, 190(4):407-409.
[90]WarnakulasuriyaS, JohnsonNW, van der WaalI, 2007. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med, 36(10):575-580.
[91]WarnakulasuriyaS, KujanO, Aguirre-UrizarJM, et al., 2021. Oral potentially malignant disorders: a consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer. Oral Dis, 27(8):1862-1880.
[92]WeberM, WehrhanF, BaranC, et al., 2020. Malignant transformation of oral leukoplakia is associated with macrophage polarization. J Transl Med, 18:11.
[93]WilliamWN, ZhaoX, BianchiJJ, et al., 2021. Immune evasion in HPV- head and neck precancer–cancer transition is driven by an aneuploid switch involving chromosome 9p loss. Proc Natl Acad Sci USA, 118(19):e2022655118.
[94]WoodMW, MedinaJE, ThompsonGC, et al., 1994. Accumulation of the p53 tumor-suppressor gene product in oral leukoplakia. Otolaryngol Head Neck Surg, 111(6):758-763.
[95]WuXB, WangRY, JiaoJT, et al., 2018. Transglutaminase 3 contributes to malignant transformation of oral leukoplakia to cancer. Int J Biochem Cell Biol, 104:34-42.
[96]XuSB, WangMY, ShiXZ, et al., 2022. Influence of PD-1/PD-L1 on immune microenvironment in oral leukoplakia and oral squamous cell carcinoma. Oral Dis, online.
[97]YagyuuT, FunayamaN, ImadaM, et al., 2021. Effect of smoking status and programmed death-ligand 1 expression on the microenvironment and malignant transformation of oral leukoplakia: a retrospective cohort study. PLoS ONE, 16(4):e0250359.
[98]YangSY, LiSH, LiuJL, et al., 2022. Histopathology-based diagnosis of oral squamous cell carcinoma using deep learning. J Dent Res, 101(11):1321-1327.
[99]YangY, LiYX, YangX, et al., 2013. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis. BMC Cancer, 13:129.
[100]ZhangL, RosinMP, 2001. Loss of heterozygosity: a potential tool in management of oral premalignant lesions? J Oral Pathol Med, 30(9):513-520.
[101]ZhangXL, HanS, HanHY, et al., 2013. Risk prediction for malignant conversion of oral epithelial dysplasia by hypoxia related protein expression. Pathology, 45(5):478-483.
[102]ZhangXL, KimKY, ZhengZL, et al., 2017a. Nomogram for risk prediction of malignant transformation in oral leukoplakia patients using combined biomarkers. Oral Oncol, 72:132-139.
[103]ZhangXL, KimKY, ZhengZL, et al., 2017b. Snail and Axin2 expression predict the malignant transformation of oral leukoplakia. Oral Oncol, 73:48-55.
Open peer comments: Debate/Discuss/Question/Opinion
<1>