Full Text:   <410>

Summary:  <182>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-11-14

Received: 2023-01-17

Revision Accepted: 2023-04-20

Crosschecked: 2023-11-15

Cited: 0

Clicked: 480

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jingquan DONG

https://orcid.org/0000-0001-9696-9681

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2023 Vol.24 No.11 P.1027-1036

http://doi.org/10.1631/jzus.B2300051


Pseudomonas aeruginosa-induced mitochondrial dysfunction inhibits proinflammatory cytokine secretion and enhances cytotoxicity in mouse macrophages in a reactive oxygen species (ROS)-dependent way


Author(s):  Haitao YANG, Yan WANG, Hui FAN, Feixue LIU, Huimiao FENG, Xueqing LI, Mingyi CHU, Enzhuang PAN, Daoyang TENG, Huizhen CHEN, Jingquan DONG

Affiliation(s):  Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University,Lianyungang222005,China; more

Corresponding email(s):   2018000029@jou.edu.cn, chenhuizhen1215@163.com

Key Words:  Pseudomonas aeruginosa, Mitochondria, Mitophagy, Proinflammatory cytokines


Haitao YANG, Yan WANG, Hui FAN, Feixue LIU, Huimiao FENG, Xueqing LI, Mingyi CHU, Enzhuang PAN, Daoyang TENG, Huizhen CHEN, Jingquan DONG. Pseudomonas aeruginosa-induced mitochondrial dysfunction inhibits proinflammatory cytokine secretion and enhances cytotoxicity in mouse macrophages in a reactive oxygen species (ROS)-dependent way[J]. Journal of Zhejiang University Science B, 2023, 24(11): 1027-1036.

@article{title="Pseudomonas aeruginosa-induced mitochondrial dysfunction inhibits proinflammatory cytokine secretion and enhances cytotoxicity in mouse macrophages in a reactive oxygen species (ROS)-dependent way",
author="Haitao YANG, Yan WANG, Hui FAN, Feixue LIU, Huimiao FENG, Xueqing LI, Mingyi CHU, Enzhuang PAN, Daoyang TENG, Huizhen CHEN, Jingquan DONG",
journal="Journal of Zhejiang University Science B",
volume="24",
number="11",
pages="1027-1036",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300051"
}

%0 Journal Article
%T Pseudomonas aeruginosa-induced mitochondrial dysfunction inhibits proinflammatory cytokine secretion and enhances cytotoxicity in mouse macrophages in a reactive oxygen species (ROS)-dependent way
%A Haitao YANG
%A Yan WANG
%A Hui FAN
%A Feixue LIU
%A Huimiao FENG
%A Xueqing LI
%A Mingyi CHU
%A Enzhuang PAN
%A Daoyang TENG
%A Huizhen CHEN
%A Jingquan DONG
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 11
%P 1027-1036
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300051

TY - JOUR
T1 - Pseudomonas aeruginosa-induced mitochondrial dysfunction inhibits proinflammatory cytokine secretion and enhances cytotoxicity in mouse macrophages in a reactive oxygen species (ROS)-dependent way
A1 - Haitao YANG
A1 - Yan WANG
A1 - Hui FAN
A1 - Feixue LIU
A1 - Huimiao FENG
A1 - Xueqing LI
A1 - Mingyi CHU
A1 - Enzhuang PAN
A1 - Daoyang TENG
A1 - Huizhen CHEN
A1 - Jingquan DONG
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 11
SP - 1027
EP - 1036
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300051


Abstract: 
pseudomonas aeruginosa belongs to the genus Pseudomonas and is a common Gram-negative, exclusively aerobic, conditionally pathogenic bacterium with the characteristics of easy colonization, mutation, and multidrug resistance (Deng et al., 2015; Azam and Khan, 2019; Jurado-Martín et al., 2021). It is mainly distributed in the air, soil, water, intestinal tract, and skin surface of humans and domestic animals and can cause complications such as ulcerative keratitis, otitis externa, skin and soft tissue infections, respiratory infections, sepsis, osteomyelitis, endocarditis, and urinary tract infections in burned or immunocompromised patients (Azam and Khan, 2019; Chai and Xu, 2020; Voth et al., 2020). P. aeruginosa is a naturally drug-resistant bacterium that is resistant to a wide range of antibiotics, making it one of the major opportunistic pathogens leading to in-hospital infections (Pang et al., 2019; Chai and Xu, 2020; Reynolds and Kollef, 2021). According to the surveillance report of the China Antimicrobial Resistance Surveillance System (CARSS, http://www.carss.cn), Gram-negative bacteria accounted for more than 70% of all bacterial infections, and P. aeruginosa accounted for 12.4%, 12.0%, and 12.2% in 2018, 2019, and 2020, respectively. Therefore, P. aeruginosa infection has become an important concern in public health care, and it is particularly important to gain insight into the means of host immune defense against P. aeruginosa infection.

铜绿假单胞菌诱导的线粒体功能障碍以ROS依赖性的方式抑制促炎细胞因子分泌并增强小鼠巨噬细胞的细胞毒性

杨海涛1,王彦2,樊慧1,刘飞雪1,冯会苗1,李雪晴1,储铭仪1,潘恩壮1,滕道阳1,陈慧珍3,董井泉1
1江苏海洋大学药学院,江苏省海洋生物资源与环境重点实验室,江苏省海洋生物产业技术协同创新中心,江苏省海洋药物化合物筛选重点实验室,中国连云港市,222005
2连云港市第二人民医院,南京医科大学康达学院附属连云港第二人民医院医学检验科,中国连云港市,222000
3连云港市第一人民医院神经科学研究所,中国连云港市,222000
摘要:随着铜绿假单胞菌(铜绿)的耐药性逐年增强,铜绿感染已经成为公共医疗卫生的重点关注问题。线粒体自噬及其介导的线粒体功能障碍在多种细菌感染中已被报道,但线粒体功能障碍在宿主调控铜绿感染中的作用尚不明确。因此,本研究建立铜绿刺激小鼠巨噬细胞感染模型和小鼠急性铜绿感染模型,探讨铜绿是否通过诱导线粒体自噬改变线粒体功能,进而影响宿主免疫炎症反应和细胞毒性,并通过监测生存率和肺组织病理学变化进一步确定线粒体自噬在小鼠铜绿体内感染模型中的作用。结果表明,铜绿引起小鼠腹腔巨噬细胞线粒体功能障碍,并通过线粒体自噬途径清除铜绿刺激引起的活性氧(ROS)累积,从而抑制铜绿引起的促炎性细胞因子分泌并增强细胞毒性。体内实验进一步确认线粒体自噬在铜绿体内感染中的作用。

关键词:铜绿假单胞菌;线粒体;线粒体自噬;促炎性细胞因子

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AishwaryaR,AlamS,AbdullahCS,et al.,2020.Pleiotropic effects of mdivi-1 in altering mitochondrial dynamics, respiration, and autophagy in cardiomyocytes.Redox Biol,36:101660.

[2]AndrieuxP,ChevillardC,Cunha-NetoE,et al.,2021.Mitochondria as a cellular hub in infection and inflammation.Int J Mol Sci,22(21):11338.

[3]AzamMW,KhanAU,2019.Updates on the pathogenicity status ofPseudomonasaeruginosa.Drug Discov Today,24(1):350-359.

[4]BanothB,CasselSL,2018.Mitochondria in innate immune signaling.Transl Res,202:52-68.

[5]ChaiYH,XuJF,2020.How doesPseudomonas aeruginosa affect the progression of bronchiectasis?Clin Microbiol Infect,26(3):313-318.

[6]ChenC,ZhouQJ,LiZY,et al.,2022.Hyperglycemia induces corneal endothelial dysfunction through attenuating mitophagy.Exp Eye Res,215:108903.

[7]DengQC,WangY,ZhangYQ,et al.,2015.Pseudomonasaeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome.Infect Immun,84(1):56-66.

[8]DeoP,ChowSH,HanML,et al.,2020.Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation.Nat Microbiol,5(11):1418-1427.

[9]GluschkoA,FaridA,HerbM,et al.,2022.Macrophages targetListeria monocytogenes by two discrete non-canonical autophagy pathways.Autophagy,18(5):‍1090-1107.

[10]JangraV,SharmaN,ChhillarAK,2022.Therapeutic approaches for combatingPseudomonasaeruginosa infections.Microbes Infect,24(4):104950.

[11]JariyamanaN,ChuveeraP,DewiA,et al.,2021.Effects of N-acetyl cysteine on mitochondrial ROS, mitochondrial dynamics, and inflammation on lipopolysaccharide-treated human apical papilla cells.Clin Oral Investig,25(6):3919-3928.

[12]Jurado-MartínI,Sainz-MejíasM,McCleanS,2021.Pseudomonasaeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors.Int J Mol Sci,22(6):3128.

[13]KrakauerT,2019.Inflammasomes, autophagy, and cell death: the trinity of innate host defense against intracellular bacteria.Mediators Inflamm,2019:2471215.

[14]LinQS,LiS,JiangN,et al.,2019.PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation.Redox Biol,26:101254.

[15]OrnatowskiW,LuQ,YegambaramM,et al.,2020.Complex interplay between autophagy and oxidative stress in the development of pulmonary disease.Redox Biol,36:101679.

[16]PalikarasK,LionakiE,TavernarakisN,2018.Mechanisms of mitophagy in cellular homeostasis, physiology and pathology.Nat Cell Biol,20(9):1013-1022.

[17]PangZ,RaudonisR,GlickBR,et al.,2019.Antibiotic resistance inPseudomonasaeruginosa: mechanisms and alternative therapeutic strategies.Biotechnol Adv,37(1):177-192.

[18]PatoliD,MignotteF,DeckertV,et al.,2020.Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis.J Clin Invest,130(11):5858-5874.

[19]PicklesS,VigiéP,YouleRJ,2018.Mitophagy and quality control mechanisms in mitochondrial maintenance.Curr Biol,28(4):R170-R185.

[20]RaghuG,BerkM,CampochiaroPA,et al.,2021.The multifaceted therapeutic role ofN-acetylcysteine (NAC) in disorders characterized by oxidative stress.Curr Neuropharmacol,19(8):1202-1224.

[21]RamondE,JametA,CoureuilM,et al.,2019.Pivotal role of mitochondria in macrophage response to bacterial pathogens.Front Immunol,10:2461.

[22]ReynoldsD,KollefM,2021.The epidemiology and pathogenesis and treatment ofPseudomonasaeruginosa infections: an update.Drugs,81(18):2117-2131.

[23]RoxasJL,RamamurthyS,CocchiK,et al.,2022.EnteropathogenicEscherichia coli regulates host-cell mitochondrial morphology.Gut Microbes,14(1):2143224.

[24]SilwalP,KimJK,KimYJ,et al.,2020.Mitochondrial reactive oxygen species: double-edged weapon in host defense and pathological inflammation during infection.Front Immunol,11:1649.

[25]StefanoGB,PtacekR,PtackovaH,et al.,2021.Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce ‘brain fog’ and results in behavioral changes that favor viral survival.Med Sci Monit,27:e930886.

[26]SuLJ,ZhangJH,GomezH,et al.,2023.Mitochondria ROS and mitophagy in acute kidney injury.Autophagy,19(2):401-414.

[27]SunLL,ShaoYN,YouMX,et al.,2022.ROS-mediated BNIP3-dependent mitophagy promotes coelomocyte survival inApostichopus japonicus in response toVibrio splendidus infection.Zool Res,43(2):285-300.

[28]TsaiML,TsaiYG,LinYC,et al.,2022.IL-25 induced ROS-mediated M2 macrophage polarization via AMPK-associated mitophagy.Int J Mol Sci,23(1):3.

[29]VothS,GwinM,FrancisCM,et al.,2020.VirulentPseudomonasaeruginosa infection converts antimicrobial amyloids into cytotoxic prions.FASEB J,34(7):9156-9179.

[30]WangKR,MaHW,LiuH,et al.,2019.The glycoprotein and nucleocapsid protein of hantaviruses manipulate autophagy flux to restrain host innate immune responses.Cell Rep,27(7):2075-2091.e5.

[31]YooSM,JungYK,2018.A molecular approach to mitophagy and mitochondrial dynamics.Mol Cells,41(1):18-26.

[32]ZhangW,KazeemBB,YangH,et al.,2021.Aeromonas sobria regulates proinflammatory immune response in mouse macrophages via activating the MAPK, AKT, and NF-‍κB pathways.J Zhejiang Univ-Sci B (Biomed & Biotechnol),22(9):782-790.

[33]ZhangX,WangYR,GongPT,et al.,2022.Neospora caninum evades immunityvia inducing host cell mitophagy to inhibit production of proinflammatory cytokines in a ROS-dependent manner.Front Immunol,13:827004.

[34]ZhangYF,YaoYK,QiuXX,et al.,2019.Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing.Nat Immunol,20(4):433-446.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE