Full Text:   <2583>

CLC number: TP273

On-line Access: 2010-04-28

Received: 2009-04-17

Revision Accepted: 2009-08-11

Crosschecked: 2010-03-29

Cited: 0

Clicked: 6086

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2010 Vol.11 No.5 P.381-393


New loop pairing criterion based on interaction and integrity considerations

Author(s):  Ling-jian Ye, Zhi-huan Song

Affiliation(s):  Institute of Industrial Process Control, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   zhsong@iipc.zju.edu.cn

Key Words:  Control structure design, Decentralized control, Interaction analysis, Variable pairing, Relative gain array

Ling-jian Ye, Zhi-huan Song. New loop pairing criterion based on interaction and integrity considerations[J]. Journal of Zhejiang University Science C, 2010, 11(5): 381-393.

@article{title="New loop pairing criterion based on interaction and integrity considerations",
author="Ling-jian Ye, Zhi-huan Song",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T New loop pairing criterion based on interaction and integrity considerations
%A Ling-jian Ye
%A Zhi-huan Song
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 5
%P 381-393
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910217

T1 - New loop pairing criterion based on interaction and integrity considerations
A1 - Ling-jian Ye
A1 - Zhi-huan Song
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 5
SP - 381
EP - 393
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910217

Loop pairing is one of the major concerns when designing decentralized control systems for multivariable processes. Most existing pairing tools, such as the relative gain array (RGA) method, have shortcomings both in measuring interaction and in integrity issues. To evaluate the overall interaction among loops, we propose a statistics-based criterion via enumerating all possible combinations of loop statuses. Furthermore, we quantify the traditional concept of integrity to represent the extent of integrity of a decentralized control system. Thus, we propose that a pairing decision should be made by taking both factors into consideration. Two examples are provided to illustrate the effectiveness of the proposed criterion.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Alstad, V., Skogestad, S., Trondheim, N., 2007. Null space method for selecting optimal measurement combinations as controlled variables. Ind. Eng. Chem. Res., 46(3):846-853.

[2]Alstad, V., Skogestad, S., Hori, E., 2009. Optimal measurement combinations as controlled variables. J. Process Control, 19(1):138-148.

[3]Arkun, Y., Downs, J., 1990. A general method to calculate input-output gains and the RGA for integrating processes. Comput. Chem. Eng., 14(10):1101-1110.

[4]Bristol, E., 1966. On a new measure of interaction for multivariable process control. IEEE Trans. Automat. Control, 11(1):133-134.

[5]Bristol, E., 1978. Recent Results on Interactions in MultiVariable Process Control. AIChE Annual Meeting.

[6]Campo, P.J., Morari, M., 1994. Achievable closed-loop propertyes of systems under decentralized control: conditions involving the steady-state gain. IEEE Trans. Automat. Control, 39(5):932-943.

[7]Chiu, M., Arkun, Y., 1990. Decentralized control structure selection based on integrity considerations. Ind. Eng. Chem. Res., 29(3):369-373.

[8]Downs, J., Vogel, E., 1993. A plant-wide industrial process control problem. Comput. Chem. Eng., 17(3):245-255.

[9]Fatehi, A., Shariati, A., 2007. Automatic Pairing of MIMO Plants Using Normalized RGA. Mediterranean Conf. on Control & Automation, p.297-302.

[10]Gagnepain, J., Seborg, D., 1982. Analysis of process interactions with applications to multiloop control system design. Ind. Eng. Chem. Fundam., 21(1):5-11.

[11]Grosdidier, P., Morari, M., Holt, B., 1985. Closed-loop properties from steady-state gain information. Ind. Eng. Chem. Fundam., 24(2):221-235.

[12]Häggblom, K., 1997. Partial Relative Gain: A New Tool for Control Structure Selection. AIChE Annual Meeting, No. 193h.

[13]Halvorsen, I., Skogestad, S., Morud, J., Alstad, V., 2003. Optimal selection of controlled variables. Ind. Eng. Chem. Res., 42(14):3273-3284.

[14]He, M., Cai, W., Li, S., 2004. New criterion for control loop configuration of multivariable processes. Ind. Eng. Chem. Res., 43(22):7057-7064.

[15]He, M., Cai, W., Li, S., 2005. Evaluation of decentralized closed-loop integrity for multivariable control system. Ind. Eng. Chem. Res., 44(10):3567-3574.

[16]Hori, E., Skogestad, S., 2008. Selection of controlled variables: maximum gain rule and combination of measurements. Ind. Eng. Chem. Res., 47(23):9465-9471.

[17]Kariwala, V., 2007. Optimal measurement combination for local self-optimizing control. Ind. Eng. Chem. Res., 46(11):3629-3634.

[18]Kariwala, V., Cao, Y., 2008. Efficient Branch and Bound Methods for Pairing Selection. Proc. IFAC World Congress, p.1-6.

[19]Kariwala, V., Forbes, J., Meadows, E., 2005. Integrity of systems under decentralized integral control. Automatica, 41(9):1575-1581.

[20]Kariwala, V., Cao, Y., Janardhanan, S., 2008. Local self-optimizing control with average loss minimization. Ind. Eng. Chem. Res., 47(4):1150-1158.

[21]Kookos, I., Lygeros, A., 1998. An algorithmic method for control structure selection based on the RGA and RIA interaction measures. Chem. Eng. Res. Des., 76(4):458-464.

[22]McAvoy, T., 1983. Interaction Analysis: Principles and Applications. ISA, Research Triangle Park, USA.

[23]McAvoy, T., Ye, N., 1994. Base control for the Tennessee Eastman Problem. Comput. Chem. Eng., 18(5):383-413.

[24]McAvoy, T., Arkun, Y., Chen, R., Robinson, D., Schnelle, P.D., 2003. A new approach to defining a dynamic relative gain. Control Eng. Pract., 11(8):907-914.

[25]Niederlinski, A., 1971. A heuristic approach to the design of linear multivariable interacting control system. Automatica, 7(6):691-701.

[26]Schmidt, H., Jacobsen, E.W., 2003. Selecting control configurations for performance with independent design. Comput. Chem. Eng., 27(1):101-109.

[27]Shinskey, F., 1990. Process Control Systems: Application, Design and Tuning. McGraw-Hill, Inc., NY, USA.

[28]Skogestad, S., 2000. Plantwide control: the search for the self-optimizing control structure. J. Process Control, 10(5):487-507.

[29]Skogestad, S., 2004. Control structure design for complete chemical plants. Comput. Chem. Eng., 28(1-2):219-234.

[30]Skogestad, S., Postlethwaite, I., 2005. Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, NY, USA.

[31]Tung, L., Edgar, R., 1981. Analysis of control-output interactions in dynamic systems. AIChE J., 27(4):690-693.

[32]Witcher, M., McAvoy, T., 1977. Interacting control systems: steady-state and dynamic measurement of interaction. ISA Trans., 16(3):35-41.

[33]Wolff, E., Skogestad, S., 1995. Operation of integrated three product (Petlyuk) distillation columns. Ind. Eng. Chem. Res., 34(6):2094-2103.

[34]Xiong, Q., Cai, W., He, M., 2005. A practical loop pairing criterion for multivariable processes. J. Process Control, 15(7):741-747.

[35]Zhu, Z., 1996. Variable pairing selection based on individual and overall interaction measures. Ind. Eng. Chem. Res., 35(11):4091-4099.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE