CLC number: TM921
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-03-21
Cited: 2
Clicked: 8326
Da-min Zhang, Shi-tao Wang, Hui-pin Lin, Zheng-yu Lu. Predictive current control of multi-pulse flexible-topology thyristor AC-DC converter[J]. Journal of Zhejiang University Science C, 2013, 14(4): 296-310.
@article{title="Predictive current control of multi-pulse flexible-topology thyristor AC-DC converter",
author="Da-min Zhang, Shi-tao Wang, Hui-pin Lin, Zheng-yu Lu",
journal="Journal of Zhejiang University Science C",
volume="14",
number="4",
pages="296-310",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1200283"
}
%0 Journal Article
%T Predictive current control of multi-pulse flexible-topology thyristor AC-DC converter
%A Da-min Zhang
%A Shi-tao Wang
%A Hui-pin Lin
%A Zheng-yu Lu
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 4
%P 296-310
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1200283
TY - JOUR
T1 - Predictive current control of multi-pulse flexible-topology thyristor AC-DC converter
A1 - Da-min Zhang
A1 - Shi-tao Wang
A1 - Hui-pin Lin
A1 - Zheng-yu Lu
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 4
SP - 296
EP - 310
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1200283
Abstract: This paper proposes a novel multi-pulse flexible-topology thyristor rectifier (FTTR) that can operate over a large voltage range while maintaining a low total harmonic distortion (THD) in the input current. The proposed multi-pulse FTTR has two operating modes: parallel mode and series mode. Irrespective of the mode in which it operates, the multi-pulse FTTR maintains the same pulses in the load current. To mitigate the harmonic injection into the AC mains, the topology-switching mechanism is then proposed. In addition, predictive current control is employed to achieve fast current response in both the transience and the transitions between modes. To verify the effectiveness of the multi-pulse FTTR as well as the control scheme, performance analysis based on an 18-pulse FTTR is investigated in detail, including fault tolerance evaluation, current THD analysis based on IEEE standard, and potential applications. Finally, a simulation model and the corresponding laboratory setup are developed. The results from both simulation and experiments demonstrate the feasibility of the proposed multi-pulse FTTR as well as the control scheme.
[1]Ahmed, S.K.M., Iqbal, A., Abu-Rub, H., Cortes, P., 2011. Model Predictive Control of a Three-to-Five Phase Matrix Converter. Workshop on Predictive Control of Electrical Drives and Power Electronics, p.36-39.
[2]Arrillaga, J., Liu, Y.H., Perera, L.B., Watson, N.R., 2006. A current reinjection scheme that adds self-commutation and pulse multiplication to the thyristor converter. IEEE Trans. Power Del., 21(3):1593-1599.
[3]Arvindan, A.N., Guha, A., 2011. Novel Topologies of 24- Pulse Rectifier with Conventional Transformers for Phase Shifting. 1st Int. Conf. on Electrical Energy Systems, p.108-114.
[4]Bao, Z., Wu, G., Yan, W., 2011. Control of cascading failures in coupled map lattices based on adaptive predictive pinning control. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 12(10):828-835.
[5]Choi, S.W., Oh, J., Cho, J., 2000. Multi-pulse Converters for High Voltage and High Power Applications. Proc. 3rd Int. Power Electronics and Motion Control Conf., p.1019- 1024.
[6]Choi, S.W., Won, C., Kim, Y.S., Kim, C.K., 2003. High-pulse conversion techniques for HVDC transmission systems. IEE Proc.-Gener. Transm. Distr., 150(3):283-290.
[7]Fukuda, S., Ueda, S., 2010. Auxiliary Supply Assisted Harmonic Suppression for 12-Pulse Phase-Controlled Rectifiers. Int. Conf. on Power Electronics, p.2310-2317.
[8]Fukuda, S., Ohta, M., Iwaji, Y., 2008. An auxiliary-supply- assisted harmonic reduction scheme for 12-pulse diode rectifiers. IEEE Trans. Power Electron., 23(3):1270- 1277.
[9]Garg, V., Singh, B., Bhuvaneswari, G., 2009. 24-pulse AC-DC converter for harmonic mitigation. IET Power Electron., 2(4):364-374.
[10]Geyer, T., 2010. Model Predictive Direct Current Control for Multi-level Converters. IEEE Energy Conversion Congress and Expo., p.4305-4312.
[11]Hao, R.X., Zheng, T.Q., You, X.J., Guo, W.J., 2007. Development and Experiment Research of High-Power Arc Heater Power Supply Utilizing Thyristor Converter. 2nd IEEE Conf. on Industrial Electronics and Applications, p.1559-1563.
[12]Kocman, S., Kolar, V., Vo, T.T., 2010. Eighteen-Pulse Rectifiers for Harmonic Mitigation. Proc. 14th Int. Conf. on Harmonics and Quality of Power, p.1-6.
[13]Lim, C.S., Rahim, N.A., Hew, W.P., Levi, E., 2013. Model predictive control of a two-motor drive with five-leg inverter supply. IEEE Trans. Ind. Electron., 60(1):54-65.
[14]Nedeljković, M., Stojiljković, Z., 2003. Fast current control for thyristor rectifiers. IEE Proc.-Electr. Power Appl., 150(6):636-638.
[15]Peterson, M., Singh, B.N., 2006. Modeling and Analysis of Multipulse Uncontrolled/Controlled AC-DC Converters. IEEE Int. Symp. on Industrial Electronics, 2:1400-1407.
[16]Peterson, M., Singh, B.N., 2007. Multipulse AC-DC Thyristor Converter with DC Bus Current Shaper. IEEE Power Engineering Society General Meeting, p.1-8.
[17]Peterson, M., Singh, B.N., 2009. Multipulse controlled AC-DC converters for harmonic mitigation and reactive power management. IET Power Electron., 2(4):443-455.
[18]Rezazadeh, A., Sedighizadeh, M., Hasaninia, A., 2010. Coordination of PSS and TCSC controller using modified particle swarm optimization algorithm to improve power system dynamic performance. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(8):645-653.
[19]Rodríguez, J.R., Pontt, J., Silva, C., Wiechmann, E.P., Hammond, P.W., Santucci, F.W., Alvarez, R., Musalem, R., Kouro, S., Lezana, P., 2005. Large current rectifiers: state of the art and future trends. IEEE Trans. Ind. Electron., 52(3):738-746.
[20]Rodríguez, J.R., Pontt, J.O., Silva, C.A., Correa, P., Lezana, P., Cortés, P., Ammann, U., 2007. Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron., 54(1):495-503.
[21]Saied, B.M., Zynal, H.I., 2007. Harmonic Current Reduction of a Six-Pulse Thyristor Converter. Int. Aegean Conf. on Electrical Machines and Power Electronics, p.596-602.
[22]Schroder, D., 2009. Predictive Control Strategies for Converter and Inverter. IEEE Int. Conf. on Industrial Technology, p.1-8.
[23]Singh, B.P., Gairola, S., 2007. Pulse Doubling in 18-Pulse AC-DC Converters. 7th Int. Conf. on Power Electronics and Drive Systems, p.533-539.
[24]Srdic, S., Nedeljković, M., 2011. Predictive fast DSP-based current controller for thyristor converters. IEEE Trans. Ind. Electron., 58(8):3349-3358.
[25]Tanaka, T., Nakazato, M., Funabiki, S., 2001. A New Approach to the Capacitor-Commutated Converter for HVDC—a Combined Commutation-Capacitor of Active and Passive Capacitors. Power Engineering Society Winter Meeting, p.968-973.
[26]Wiechmann, E.P., Burgos, R.P., Holtz, J., 2000. Sequential connection and phase control of a high-current rectifier optimized for copper electrowinning applications. IEEE Trans. Ind. Electron., 47(4):734-743.
[27]Wiechmann, E.P., Aqueveque, P., Morales, A.S., Acuna, P.F., Burgos, R., 2008. Multicell high-current rectifier. IEEE Trans. Ind. Appl., 44(1):238-246.
[28]Yang, C., Zhu, S., Kong, W., Lu, L., 2006. Application of generalized predictive control in networked control system. J. Zhejiang Univ.-Sci. A, 7(2):225-233.
[29]Yaramasu, V., Wu, B., Rivera, M.E., Rodríguez, J.R., Wilson, A., 2012. Cost-Function Based Predictive Voltage Control of Two-Level Four-Leg Inverters Using Two Step Prediction Horizon for Standalone Power Systems. 27th Annual IEEE Applied Power Electronics Conf. and Expo., p.128-135.
[30]Young, C.M., Chen, M.H., Lai, C.H., Shih, D.C., 2012. A novel active interphase transformer scheme to achieve three-phase line current balance for 24-pulse converter. IEEE Trans. Power Electron., 27(4):1719-1731.
[31]Zargari, N.R., Yuan, X., Bin, W., 1997. A multilevel thyristor rectifier with improved power factor. IEEE Trans. Ind. Appl., 33(5):1208-1213.
Open peer comments: Debate/Discuss/Question/Opinion
<1>