Full Text:   <3681>

Summary:  <2006>

CLC number: TM15

On-line Access: 2014-11-07

Received: 2014-02-24

Revision Accepted: 2014-06-05

Crosschecked: 2014-10-16

Cited: 3

Clicked: 7693

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.11 P.1021-1034

http://doi.org/10.1631/jzus.C1400062


Coupling analysis of transcutaneous energy transfer coils with planar sandwich structure for a novel artificial anal sphincter


Author(s):  Lei Ke, Guo-zheng Yan, Sheng Yan, Zhi-wu Wang, Da-sheng Liu

Affiliation(s):  Institute of Medical Precision Engineering and Intelligent Systems, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding email(s):   suda_kelei@163.com

Key Words:  Transcutaneous energy transfer, Planar spiral inductance, Mutual inductance, Coupling coefficient, Artificial anal sphincter, Fecal incontinence


Lei Ke, Guo-zheng Yan, Sheng Yan, Zhi-wu Wang, Da-sheng Liu. Coupling analysis of transcutaneous energy transfer coils with planar sandwich structure for a novel artificial anal sphincter[J]. Journal of Zhejiang University Science C, 2014, 15(11): 1021-1034.

@article{title="Coupling analysis of transcutaneous energy transfer coils with planar sandwich structure for a novel artificial anal sphincter",
author="Lei Ke, Guo-zheng Yan, Sheng Yan, Zhi-wu Wang, Da-sheng Liu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="11",
pages="1021-1034",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400062"
}

%0 Journal Article
%T Coupling analysis of transcutaneous energy transfer coils with planar sandwich structure for a novel artificial anal sphincter
%A Lei Ke
%A Guo-zheng Yan
%A Sheng Yan
%A Zhi-wu Wang
%A Da-sheng Liu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 11
%P 1021-1034
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400062

TY - JOUR
T1 - Coupling analysis of transcutaneous energy transfer coils with planar sandwich structure for a novel artificial anal sphincter
A1 - Lei Ke
A1 - Guo-zheng Yan
A1 - Sheng Yan
A1 - Zhi-wu Wang
A1 - Da-sheng Liu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 11
SP - 1021
EP - 1034
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400062


Abstract: 
This paper presents a set of analytical expressions used to determine the coupling coefficient between primary and secondary Litz-wire planar coils used in a transcutaneous energy transfer (TET) system. A TET system has been designed to power a novel elastic scaling artificial anal sphincter system (ES-AASS) for treating severe fecal incontinence (FI), a condition that would benefit from an optimized TET. Expressions that describe the geometrical dimension dependence of self- and mutual inductances of planar coils on a ferrite substrate are provided. The effects of ferrite substrate conductivity, relative permeability, and geometrical dimensions are also considered. To verify these expressions, mutual coupling between planar coils is computed by 3D finite element analysis (FEA), and the proposed expressions show good agreement with numerical results. Different types of planar coils are fabricated with or without ferrite substrate. Measured results for each of the cases are compared with theoretical predictions and FEA solutions. The theoretical results and FEA results are in good agreement with the experimental data.

用于人工肛门括约肌的经皮能量线圈耦合分析

建模分析用于经皮能量传输的三种不同结构平面线圈间的耦合电磁场分布,特别是平面铁氧体磁片对空心线圈自感和互感参数的附加影响。 对平面螺旋线圈间的耦合电磁场模型进行了详细的理论分析,分别对比了三种结构线圈(图2)的自感、互感和耦合强度,得出铁氧体磁片对线圈自身参数的影响,为参数化设计方法奠定理论基础。 首先,简单介绍了应用主体新型人工肛门括约肌的研究进展。然后,对文中提出的三种不同结构线圈对间的电磁场分布进行理论建模,得到线圈参数与线圈自感和互感的相互作用关系。最后,针对实际制作的不同结构的线圈(表1,2),分别使用实验、有限元分析和模型公式计算方法对上述理论公式进行交叉验证和对比(图7–12)。 夹层式平面螺旋线圈间的耦合强度最优,其大小与股数成正比,与线圈间距成反比,并且铁氧体磁片存在最优厚度和相对磁导率使其对耦合因子的增强效果最佳。
经皮能量传输;平面螺旋线圈电感;互感;耦合因子;人工括约肌;肛门失禁

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Acero, J., Alonso, R., Burdio, J.M., et al., 2006a. Analytical equivalent impedance for a planar circular induction heating system. IEEE Trans. Magn., 42(1):84-86.

[2]Acero, J., Alonso, R., Burdio, J.M., et al., 2006b. Frequency-dependent resistance in Litz-wire planar windings for domestic induction heating appliances. IEEE Trans. Power Electron., 21(4):856-866.

[3]ANSYS, Inc., 2006. Ansoft Maxwell 3D Field Simulator v11 User’s Guide (Ansoft Corporation, Rev. 2.0).

[4]Babic, S., Sirois, F., Akyel, C., et al., 2010. Mutual inductance calculation between circular filaments arbitrarily positioned in space: alternative to grover’s formulas. IEEE Trans. Magn., 46(9):3591-3600.

[5]Babic, S., Sirois, F., Akyel, C., et al., 2011. New formulas for mutual inductance and axial magnetic force between a thin wall solenoid and a thick circular coil of rectangular cross-section. IEEE Trans. Magn., 47(8):2034-2044.

[6]Belyaev, O., Müller, C., Uhl, W., 2006. Neosphincter surgery for fecal incontinence: a critical and unbiased review of the relevant literature. Surg. Today, 36(4):295-303.

[7]Bharucha, A.E., Wald, A., Enck, P., et al., 2006. Functional anorectal disorders. Gastroenterology, 130(5):1510-1518.

[8]Conway, J.T., 2007. Inductance calculations for noncoaxial coils using Bessel functions. IEEE Trans. Magn., 43(3):1023-1034.

[9]Dissanayake, T.D., Hu, A.P., Malpas, S., et al., 2009. Experimental study of a TET system for implantable biomedical devices. IEEE Trans. Biomed. Circ. Syst., 3(6):370-378.

[10]Edden, Y., Wexner, S.D., 2009. Therapeutic devices for fecal incontinence: dynamic graciloplasty, artificial bowel sphincter and sacral nerve stimulation. Expert Rev. Med. Device, 6(3):307-312.

[11]Gallas, S., Leroi, A.M., Bridoux, V., et al., 2009. Constipation in 44 patients implanted with an artificial bowel sphincter. Int. J. Colorectal Dis., 24(8):969-974.

[12]Grover, F.W., 1962. Inductance Calculations. Dover Publications, NY, USA.

[13]Hurley, W.G., Duffy, M.C., 1997. Calculation of self- and mutual impedances in planar sandwich inductors. IEEE Trans. Magn., 33(3):2282-2290.

[14]Jow, U.M., Ghovanloo, M., 2007. Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans. Biomed. Circ. Syst., 1(3):193-202.

[15]Lee, S.H., Lorenz, R.D., 2011. Development and validation of model for 95%-efficiency 220-W wireless power transfer over a 30-cm air gap. IEEE Trans. Ind. Appl., 47(6):2495-2504.

[16]Liu, X., Hui, S.Y.R., 2008. Optimal design of a hybrid winding structure for planar contactless battery charging platform. IEEE Trans. Power Electron., 23(1):455-463.

[17]Ma, G.Y., Yan, G.Z., He, X., 2007. Power transmission for gastrointestinal microsystems using inductive coupling. Physiol. Meas., 28(3):9-18.

[18]Ma, J.M., Yang, Q.X., Chen, H.Y., 2010. Transcutaneous energy and information transmission system with optimized transformer parameters for the artificial heart. IEEE Trans. Appl. Supercond., 20(3):798-801.

[19]Mohan, S.S., Hershenson, M.M., Boyd, S.P., et al., 1999. Simple accurate expressions for planar spiral inductors. IEEE J. Solid-State Circ., 34(10):1419-1424.

[20]Mundy, L., Merlin, T.L., Maddern, G.J., et al., 2004. Systematic review of safety and effectiveness of an artificial bowel sphincter for faecal incontinence. Brit. J. Surg., 91(6):665-672.

[21]RamRakhyani, A.K., Mirabbasi, S., Chiao, M., 2011. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circ. Syst., 5(1):48-63.

[22]Roshen, W.A., Turcotte, D.E., 1988. Planar inductor on magnetic substrates. IEEE Trans. Magn., 24(6):3213-3216.

[23]Soma, M., Galbraith, D.C., White, R.L., 1987. Radio-frequency coils in implantable devices: misalignment analysis and design procedure. IEEE Trans. Biomed. Eng., 34(4):276-282.

[24]Wong, D.W., Congliosi, S.M., Spencer, M.P., et.al., 2002. The safety and efficacy of the artificial bowel sphincter for fecal incontinence. Dis. Colon Rectum, 45(9):1139-1153.

[25]Yue, C.P., Wong, S.S., 2000. Physical modeling of spiral inductors on silicon. IEEE Trans. Electron Device, 47(3):560-568.

[26]Zan, P., Yan, G., Liu, H., 2008. Modeling of human colonic blood flow for a novel artificial anal sphincter system. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 9(9):734-738.

[27]Zan, P., Yan, G., Liu, H., 2009a. Analysis of electromagnetic compatibility in biological tissue for a novel artificial anal sphincter. IET Sci. Meas. Technol., 3(1):22-26.

[28]Zan, P., Yan, G., Liu, H., et al., 2009b. Adaptive transcutaneous power delivery for an artificial anal sphincter system. J. Med. Eng. Technol., 33(2):136-141.

[29]Zhang, X., Ho, S.L., Fu, W.N., 2011. Quantitative analysis of a wireless power transfer cell with planar spiral structures. IEEE Trans. Magn., 47(10):3200-3203.

[30]Zierhofer, C.M., Hochmair, E.S., 1996. Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Trans. Biomed. Eng., 43(7):708-714.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE