CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-03-01
Cited: 0
Clicked: 2627
MasakiNishikawa, YasuyukiSakai, NorimotoYanagawa. Design andstrategy formanufacturing kidney organoids[J]. Journal of Zhejiang University Science D, 2020, 3(1): 7-14.
@article{title="Design andstrategy formanufacturing kidney organoids",
author="MasakiNishikawa, YasuyukiSakai, NorimotoYanagawa",
journal="Journal of Zhejiang University Science D",
volume="3",
number="1",
pages="7-14",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-020-00060-0"
}
%0 Journal Article
%T Design andstrategy formanufacturing kidney organoids
%A MasakiNishikawa
%A YasuyukiSakai
%A NorimotoYanagawa
%J Journal of Zhejiang University SCIENCE D
%V 3
%N 1
%P 7-14
%@ 1869-1951
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-020-00060-0
TY - JOUR
T1 - Design andstrategy formanufacturing kidney organoids
A1 - MasakiNishikawa
A1 - YasuyukiSakai
A1 - NorimotoYanagawa
J0 - Journal of Zhejiang University Science D
VL - 3
IS - 1
SP - 7
EP - 14
%@ 1869-1951
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-020-00060-0
Abstract: Despite a continuing increase in the number of patients sufering from chronic kidney disease, currently available treatments
for these patients, such as dialysis and kidney transplantation, are imperfect. The kidney is also a critical target organ vulnerable to the toxicity of various new drugs, and the lack of a reliable invitro culture model imposes a severe limitation on
drug discovery. Although the development of induced pluripotent stem cells (iPSCs) revolutionized strategies in biomedical
felds, the complexity of the kidney imposed additional challenge to the application of this technology in kidney regeneration.
Nonetheless, the recent advancement in our understanding on the developmental origin of kidney progenitor cells and the
mechanisms of their reciprocal induction and self-organization has boosted research in kidney regeneration. Research since
then has demonstrated that kidney organoids derived from iPSCs can serve as a useful model for drug discovery and toxicity
screening, as well as for disease modeling, especially in combination with gene editing techniques. Moreover, attempts at
kidney organoid implantation in animals have suggested their potential as an alternative source of kidney transplantation.
In this review, we summarize recent progress on the generation of kidney organoids, as well as the obstacles that remain.
Open peer comments: Debate/Discuss/Question/Opinion
<1>